Minería de datos aplicada a la clasificación del rendimiento académico

dc.contributor.advisorMorales Carrillo, Jéssica Johanna
dc.contributor.authorCevallos Molina, Sulay Katerine
dc.contributor.authorTrujillo Utreras, Viviana Katherine
dc.date.accessioned2018-12-27T19:50:08Z
dc.date.available2018-12-27T19:50:08Z
dc.date.issued2018-11
dc.descriptionThe present work of degree was developed with the objective of applying the main data mining algorithms used in education to make inferences in the classification of the academic performance of the students of the computing career of the ESPAM MFL. The tool used for the analysis process was the WEKA (Waikato Environment for Knowledge Analysis) software. In addition, the CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology was used, which is structured in phases of development. Initially, the information was sought from existing research which allowed us to perform an approach to the algorithms and variables to apply, also the adaptation of the data was carried out according to the selected tool, once the data were prepared, the most appropriate techniques were applied and the pertinent tests were carried out to determine the usefulness of the models obtained from the variables that were evaluated. It was established that the main algorithms of the classification technique are J48, Naïve Bayes, Random Forest and OneR since these are the most used in educational data mining due to their accuracy in the classification of data, with the models determined that the variables that most affect the classification of academic performance of students are: academic state, semester and sub-total, these algorithms were applied in order to obtain a model that generates knowledge that supports decision-making in the education process higher.es_ES
dc.description.abstractEl presente trabajo de titulación fue desarrollado, con el objetivo de aplicar los principales algoritmos de minería de datos utilizados en la educación para realizar inferencias en la clasificación del rendimiento académico de los estudiantes de la carrera de computación de la ESPAM MFL. La herramienta utilizada para el proceso de análisis fue el software WEKA (Waikato Environment for Knowledge Analysis), además se usó la metodología CRISP-DM (Cross-Industry Standard Process for Data Mining) la cual está estructurada en fases de desarrollo: inicialmente se buscó información de investigaciones ya existentes lo cual permitió realizar un enfoque de los algoritmos y variables a aplicar, también se realizó la adaptación de los datos de acuerdo a la herramienta seleccionada, una vez preparados los datos se aplicaron las técnicas más apropiadas y se realizaron las pruebas pertinentes para determinar la utilidad de los modelos obtenidos a partir de las variables que se evaluaron. Se estableció que los principales algoritmos de la técnica de clasificación son el J48, Naïve Bayes, Random Forest y OneR ya que estos son los más utilizados en la minería de datos educacional debido a su precisión en la clasificación de datos, con los modelos se determinó que las variables que más inciden en la clasificación del rendimiento académico de los estudiantes son: estado académico, semestre y sub total, se aplicaron estos algoritmos con el fin de obtener un modelo que genere conocimiento que apoye la toma de decisiones en el proceso de educación superior.es_ES
dc.format.extent67 p.es_ES
dc.identifier.urihttp://repositorio.espam.edu.ec/handle/42000/862
dc.language.isospaes_ES
dc.publisherCalceta: ESPAM MFLes_ES
dc.rightsopenAccesses_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Ecuador*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ec/*
dc.subjectMinería de datoses_ES
dc.subjectRendimiento Académicoes_ES
dc.subjectÁrbol de Decisiónes_ES
dc.subjectNaïve Bayeses_ES
dc.titleMinería de datos aplicada a la clasificación del rendimiento académicoes_ES
dc.typebachelorThesises_ES

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TTC10.pdf
Size:
2.06 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: