

ESCUELA SUPERIOR POLITÉCNICA AGROPECUARIA DE MANABÍ "MANUEL FÉLIX LÓPEZ"

CARRERA DE MEDIO AMBIENTE

TESIS PREVIA A LA OBTENCIÓN DEL TÍTULO DE INGENIERA EN MEDIO AMBIENTE

TEMA:

EVALUACIÓN DE LA CALIDAD DE AGUA EN LA MICROCUENCA DEL RÍO BEJUCO MEDIANTE LA APLICACIÓN DE INDICADORES FÍSICO-QUÍMICOS Y MICROBIOLÓGICOS

AUTORA:

ANGÉLICA MARÍA REINA MORA

TUTORA:

Q.F. ANA MARÍA AVEIGA ORTIZ, MG

CALCETA, JULIO 2013

DERECHO DE AUTORÍA

Yo, Angélica María Reina Mora, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedemos nuestros derechos de propiedad intelectual correspondiente a este trabajo, a la Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, según lo establecido por la ley de Propiedad Intelectual y su Reglamento.

ANGÉLICA MARÍA REINA MORA

CERTIFICACIÓN DEL TUTOR

Ana María AveigaOrtiz certifica haber tutelado la tesis titulada "EVALUACIÓN DE LA CALIDAD DE AGUA EN LA MICROCUENCA DEL RÍO BEJUCO MEDIANTE LA APLICACIÓN DE INDICADORES FÍSICO-QUÍMICOS Y MICROBIOLÓGICOS", que ha sido desarrollada por Angélica María Reina Mora, previa a la obtención del título de Ingeniera en Medio Ambiente, de acuerdo alREGLAMENTO PARA LA ELABORACIÓN DE TESIS DE GRADO DE TERCER NIVEL de la Escuela Superior Politécnica de Manabí Manuel Félix López.

Q.F. ANA MARÍA AVEIGA ORTIZ

APROBACIÓN DEL TRIBUNAL

Los suscritos miembros del tribunal correspondiente, declaramos que hemos APROBADO la tesis titulada "EVALUACIÓN DE LA CALIDAD DE AGUA EN LA MICROCUENCA DEL RÍO BEJUCO MEDIANTE LA APLICACIÓN DE INDICADORES FÍSICO-QUÍMICOS Y MICROBIOLÓGICOS", que ha sido propuesta, desarrollada y sustentada por Angélica María Reina Mora, previa a la obtención del título de Ingeniera en Medio Ambiente, de acuerdo al REGLAMENTO PARA LA ELABORACIÓN DE TESIS DE GRADO DE TERCER NIVEL de la Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López.

Ing. Sergio AlcívarPinargoteIng. Flor María Cárdenas Guillén**MIEMBRO DEL TRIBUNALMIEMBRO DEL TRIBUNAL**

Q.F. Patricio Noles Aguilar
PRESIDENTE DEL TRIBUNAL

AGRADECIMIENTO

En primer lugar agradezco a Dios por iluminarme y bendecirme en todos los momentos de mi vida, por haberme dado la familia y amigos que tengo a mi lado.

A mis queridos padres y hermanos por todo su apoyo, esfuerzo y por estar a mi lado en los buenos y malos momentos.

A mi tutora Q.F. Ana Maria Aveiga, y a los miembors del tribunal el Q.F. Patricio Noles Aguilar, Ing. Flor Maria Cardenas Guillen, Ing Sergio Alcivar Pinargote que con su paciencia, tiempo y conocimientos aportaron a la culminacion de una etapa tan importante en mi vida.

A mis amigas/os Elba Carranza, Nicolas Candela, Guadalupe Loor, Jorge Martinez, Eliana Mera, Maria Lectong y Kenia Barre que me brindaron su amistad incondicional y con los que comparti muchos años juntos y experiencias que nunca seran olvidadas y que de una u otra forma me ayudaron a la culminacion de este proyecto. Un agradecimiento especial a mi pareja Roberto Vera Mora por su compañía y apoyo constante.

ANGÉLICA REINA MORA

DEDICATORIA

Quiero	dedicar	mi	tesis	а	mis	padres	Jacinto	ReinaReina	У	Exidalia	Mora
Zambra	no, que	con	su sad	crifi	cio y	esfuerz	o me ayu	idaron a llag	ar a	a esta ins	tancia
de mi vi	da, por s	er m	ni forta	lez	a, mi	guía y e	estar a mi	i lado siempr	e.		

Los Amo.

ANGÉLICA REINA MORA

CONTENIDO

CARATULA		i
DERECHO [DE AUTORÍA	ii
CERTIFICAC	CIÓN DEL TUTOR	iii
APROBACIO	ÓN DEL TRIBUNAL	iv
RESUMEN .		xi
ABSTRACT.		Xii
CAPÍTULO	I. ANTECEDENTES	1
1.1. P	PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA	1
1.2. J	USTIFICACIÓN	3
1.3. C	DBJETIVOS	5
1.3.1.	OBJETIVO GENERAL	5
1.3.2.	OBJETIVO ESPECÍFICO	5
1.4. H	HIPÓTESIS	5
CAPÍTULO	II. MARCO TEÓRICO	6
	UNDAMENTO DE LA QUÍMICA DEL AGUA	
2.2. C	CALIDAD DEL AGUA	6
2.2.1.		
	MINACIÓN DEL AGUA	
2.4. INFLUE	ENCIA DEL USO DEL SUELO SOBRE LA CALIDAD DE AGUA	8
2.5. LA C	ALIDAD GANADERA Y SU RELACIÓN CON LA CALIDAD DEL AGUA	8
2.6. LA A	GRICULTURA Y SU INFLUENCIA EN LA CALIDAD DEL AGUA	9
2.7. ACTI	VIDADES HUMANAS	9
2.8.INVEST	IGACIONES SOBRE CALIDAD DE AGUA EN ECUADOR	9
2.9.PARÁM	1ETROS DE CALIDAD FÍSICO-QUÍMICOS	10
2.10. PARÁ	METRO DE CALIDAD MICROBIOLÓGICAS	11
2.11.SELEC	CIÓN DEL SITIO DE MUESTREO	11
2.11.1	DESARROLLO DE PROGRAMAS DE MONITOREO	12
2.12.MO	NITOREO DE AGUA	13
2.12.1	RECOLECCIÓN DE MUESTRA	13
2.12.2	2. VOLUMEN DE LA MUESTRA	14
2.12.3	PRESERVACIÓN DE MUESTRAS	14
2.13.	TEXTO UNIFICADO LEGISLACIÓN AMBIENTAL SECUNDARIA (TULSMA)	15
2.14.	INDICE DE CALIDAD DEL AGUA (ICA)	15

2.14	4.1. PARÁMETRO DE LA CALIDAD DEL AGUA	16
CAPÍTUL	O III. DESARROLLO METODOLÓGICO	19
3.1.	MÉTODO DE INVESTIGACIÓN	19
3.2.	UBICACIÓN	19
3.3.	GEOGRAFÍA	19
3.4.	CARACTERÍSTICAS SOCIOECONÓMICAS	20
3.5.	POBLACIÓN	20
3.6.	DURACIÓN DEL TRABAJO	20
3.7.	VARIABLES EN ESTUDIO	20
3.8.	PROCEDIMIENTO	21
CAPÍTUL	OS IV. RESULTADOS Y DISCUSIÓN	26
CAPÍTUL	O V. CONCLUSIONES Y RECOMENDACIONES	68
5.1.	CONCLUSIONES	68
5.2.	RECOMENDACIONES	69
BIBLIOGI	RAFIA	70
ΔΝΕΧΟ	S.	7/

CONTENIDO DE CUADROS

CUADRO 3.02. Índice de Calidad Ambiental (ICA)23
CUADRO3.03. Escala de Clasificación del Índice de Calidad de Agua en funcion del uso¡Error! Marcador no definido.
CUADRO 3.04.Rangos de calificación del ICA según el criterio genenal24
CUADRO 4.01. Selección de puntos de muestreos georeferenciados para la toma de muestras de agua. Época seca y lluviosa 2011.ESPAM MFL
CUADRO 4.02. Valores de ph encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3
CUADRO 4.03. Valores de ph encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3
CUADRO 4.04. Valores de color verdadero encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3
CUADRO 4.05. Valores de color verdadero encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3
CUADRO 4.06. Valores de turbidez encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3
CUADRO 4.07. Valores de turbidez encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3
CUADRO 4.08. Valores de solidos totales encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3
CUADRO 4.09. Valores de solidos totales encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3
CUADRO 4.10. Valores de solidos suspendidos encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3
CUADRO 4.11. Valores de solidos suspendidos encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 334
CUADRO 4.12. Valores de alcalinidad total encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3
CUADRO 4.13. Valores de alcalinidad total encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3
CUADRO 4.14. Valores de nitritos encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3
CUADRO 4.15. Valores de nitritos encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3
CUADRO 4.16. Valores de dureza total encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3

época seca. Estación 1, 2 y 3época seca. Estación 1, 2 y 3	3
CUADRO 4.18. Valores de DBO ⁵ encontrados para calidad de agua en el río Bejuco e lluviosa. Estación 1, 2 y 3	-
CUADRO 4.19. Valores de DBO ⁵ encontrados para calidad de agua en el río Bejuco en épo Estación 1, 2 y 3	
CUADRO 4.20. Valores de coliformes totales encontrados para calidad de agua en el río B época lluviosa. Estación 1, 2 y 3	9
CUADRO 4.21. Valores de coliformes totales encontrados para calidad de agua en el río en época seca. Estación 1, 2 y 3	•
CUADRO 4.22. Resultado del índice de calidad ambiental (ICA)	43
CUADRO 4.23. Resultado del índice de calidad ambiental (ICA)	44
CUADRO 4.24. Resultado del índice de calidad ambiental (ICA)	45
CUADRO 4.25. Resultado del índice de calidad ambiental (ICA)	46
CUADRO 4.26. Resultado del índice de calidad ambiental (ICA)	47
CUADRO 4.27. Resultado del índice de calidad ambiental (ICA)	48
CUADRO 4.28. Resultado del índice de calidad ambiental (ICA)	49
CUADRO 4.29. Resultado del índice de calidad ambiental (ICA)	50
CUADRO 4.30. Resultado del índice de calidad ambiental (ICA)	51
CUADRO 4.31. Resultado del índice de calidad ambiental (ICA)	52
CUADRO 4.32. Resultado del índice de calidad ambiental (ICA)	53
CUADRO 4.33. Resultado del índice de calidad ambiental (ICA)	54
CUADRO 4.34. Resultado del índice de calidad ambiental (ICA)	55
CUADRO 4.35. Resultado del índice de calidad ambiental (ICA)	56
CUADRO 4.36. Resultado del índice de calidad ambiental (ICA)	57
CUADRO 4.37. Resultado del índice de calidad ambiental (ICA)	58
CUADRO 4.38. Resultado del índice de calidad ambiental (ICA)	59
CUADRO 4.39. Resultado del índice de calidad ambiental (ICA)	60
CUADRO 4.40. Resultado del índice de calidad ambiental (ICA)	61
CUADRO 4.41. Resultado del índice de calidad ambiental (ICA)	62
CUADRO 4.42. Resultado del índice de calidad ambiental (ICA)	63
CUADRO 4.43. Resultado del índice de calidad ambiental (ICA)	64
CUADRO 4.44. Resultado del índice de calidad ambiental (ICA)	65
CUADRO 4.45. Resultado del índice de calidad ambiental (ICA)	66

RESUMEN

La investigación tuvo como objetivo determinar la calidad del agua del río Bejuco mediante indicadores físicos-químicos y microbiológicos, interrelacionándolos con el índice de Calidad de Agua ICA y TULSMA para establecer sus usos agrícola y doméstico en época seca y lluviosa. Se establecieron tres estaciones de muestreo incluyendo dos puntos en cada estación y realizando dos replicas en la época seca y lluviosa en cada punto de muestreo, en los que se realizaron análisis físicos, químicos y microbiológicos, de los cuales la mayoría de los resultados están dentro de los límites máximos permisibles para aguas de uso agrícola y domestico de acuerdo al TULSMA. Para ello se siguieron los protocolos establecidos en Standard Methods, interrelacionada con la metodología del ÍCA. Según la clasificación de calidad de agua se encontró de acuerdo a valores entre 50 - 69 considerado como rango apto. En función de sus usos se obtuvo como criterio general que es poco contaminado; según su abastecimiento público es de mayor necesidad de tratamiento; según su recreación es aceptable pero no recomendable; según la pesca y vida acuática es dudosa para especies sensibles y según su uso industrial y agrícola es sin tratamiento para la industria normal. Las actividades humanas que se desarrollan en sus alrededores, no tiene mayor incidencia de contaminación. Se concluye que aún existe un buen medio para la vida acuática y que el agua del río Bejuco puede ser utilizada para cualquier actividad que se requiera, pero con mayor tratamiento.

PALABRAS CLAVES: Microcuenca, río, Índice de Calidad del Agua, función de usos.

ABSTRACT

This research determines the quality of the water in Bejucoriver by physical chemical and microbiological indicators interrelated with the Water Quality Index WQI and TULSMA to establish agricultural and domestic uses in dry and rainy seasons. It established three sampling stations including two points in each season and making two replicas in the dry and rainy seasons at each sampling point, in which analyzes physical, chemical and microbiological conditions, most of the results are within the maximum permissible limits of water for agricultural and domestic uses according to TULSMA. This followed the protocols established in Standard Methods, interrelated with the methodology of WQI. According to the range established was within 50-69 in the classification of water quality. Depending on its use as a general criterion is slightly contaminated, for public supply needs treatment, for recreation is acceptable but not recommended, for fishing and aquatic life is doubtful for sensitive species and for industrial and agricultural uses can be used untreated. Human activities that take place in its surroundings do not increased the incidence of contamination. We conclude that there is still a good way for aquatic life and the water in Bejucoriver can be used for any activity that is required.

KEYWORDS: River, Water Quality Index, function uses.

CAPÍTULO I. ANTECEDENTES

1.1. PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA

El agua es parte integrante del medio ambiente y resulta imprescindible para el buen funcionamiento de la biósfera. También es de vital importancia para todos los sectores socioeconómicos, ya que el desarrollo humano y económico es sencillamente imposible si no existe un abastecimiento de agua seguro y estable. Por otra parte, el agua es un elemento de formaciones vivientes en la tierra; sinembargo, es un factor que puede convertirse en un vehículo para la adquisición de diversas enfermedades en el ser humano. Actualmente, se reportan aproximadamente 20enfermedades en las que el agua actúa directa e indirectamente en su aparición, algunos de ellos con alto impacto en términos de movilidad y mortalidad (Rodríguez,2007).

En la actualidad el recurso hídrico está sometido a presiones como consecuencia del crecimiento de la población, el incremento de las actividades pecuarias y el establecimiento de asentamientos humanos en zonas no adecuadas, lo cual ha llevado a una competencia por los recursos limitados de agua dulce. Asímismo, una combinación de problemas económicos y socioculturales sumados a una carencia de programas de superación de la pobreza ha contribuido a que personas que viven en condiciones precarias a sobreexplotar los recursos naturales, lo cual afecta negativamente la calidad del recurso agua. Las carencias de medidas de control de la contaminación dificultan el uso sostenible del líquido vital; la causa de los problemas de su contaminación es la destrucción del bosque por incendios forestales, uso no adecuado del suelo, la falta de conciencia de conservación de los recursos naturales (Otero, 2002).

Los problemas relacionados con el agua se hacen cada vez más visibles en todo el mundo, la escasez generalizada de este recurso, su destrucción gradual, su

creciente contaminación ,la expansión económica, el crecimiento demográfico, acompañados de los estilos de vida de alto consumo y producción excesiva de residuos han llevado al empleo cada vez mayor de agua (ADTI, 2003).

El uso sostenible del agua es de importancia fundamental para el planeta, es esencial tanto para la producción agrícola como para el buen funcionamiento de los ecosistemas, sin embargo, es común encontrar un uso no sostenible del agua. El aumento de la población y del consumo de agua *per cápita* incrementa la presión sobre la disponibilidad yla calidad de los recursos hídricos y sobre los ecosistemas los cuales constituyen un elemento clave para la regulación y la purificación del agua (Pagiola, 2004).

En Ecuador, la calidad del agua es un tema de importancia en la gestión de los recursos hídricos. Cada día, los niveles de contaminación de los cuerpos de agua superficiales son mayores y se necesita contar con información que sirva para establecer medidas de protección o recuperación de las zonas abastecedoras de agua y de las cuencas donde se desarrollan las actividades agrícolas y ganaderas. Tradicionalmente, la evaluación de la calidad del agua se ha efectuado considerando únicamente parámetros físico-químicos pero en los últimos años se está incluyendo en esta evaluación el uso de indicadores Biológicos (Roldán, 2003).

En la comunidad el Bejuco, el recurso hídrico de la Microcuenca hidrográficaestá siendo afectado por la acumulación de sedimentos, debido a la deforestación masiva en zonas con pendientes pronunciadas y en las riberas del río, debido a la expansión agropecuaria, así como también por la descarga de efluentes sólidos y líquidos provenientes de fuentes domésticas y pecuarias, lo que ha conllevado a la alteración de las características físicas, químicas y microbiológicas del agua. La continua incorporación de materiales ajenos al recurso hídrico, amenaza la salud humana y el funcionamiento de los sistemas acuáticos, si no se toman medidas paliativas urgentes, el riesgo a corto o mediano plazo puede ser mayor.

Por los problemas antes mencionados, se crea la necesidad de realizar una evaluación de la calidad del agua en la Microcuenca del río Bejuco mediante indicadores físicos, químicos y microbiológicos, para determinar el nivel de afectación y de los resultados que se obtengan, sirvan para plantear alternativas de mejoras para la conservación del recurso hídrico y el goce de buena salud por parte de los productores.

Los antecedentes expuestos permiten formular la siguiente interrogante: ¿Las actividades productivas que se desarrollan en la parte media y baja de la Microcuenca del rio Bejuco están alterando la calidad del agua, evidenciado en la calidad de los indicadores físicos, químicos y microbiológicos?.

1.2. JUSTIFICACIÓN

A lo largo del desarrollo de la humanidad, los ecosistemas de agua dulce han representado elementos indispensables para la vida silvestre de plantas, animales y otras formas de vida; además de brindarles recursos como agua, energía hidráulica, alimentos y lugares apropiados para el desarrollo del turismo al ser humano. Una de las principales problemáticas ambientales es la explotación y el uso inadecuado de los recursos naturales, lo que se debe al desconocimiento de los procesos que operan en los ecosistemas de agua dulce. Para erradicar estos problemas es necesario tomar una serie de medidas para el manejo con vistas a su conservación, recuperación parcial o total y su posible uso sostenible. Esto conlleva a uno de los graves problemas que afectan a escala mundial como lo es la alteración causada por la incorporación de elementos a la biosfera producto de la actividad del ser humano, lo cual se conoce como contaminación (Hernández, 2005).

Las comunidades asentadas en la Microcuenca y zonas de influencia presentan un altogrado de inconsciencia ambiental que repercute en el deterioro de la flora y fauna .La tendencia a la aplicación de agroquímicos, producción de desechos pecuarios, asícomo la inadecuada disposición de residuos sólidos en los cauces

de las quebradas y ríos, ocasionan alteraciones fisicoquímicas, bacteriológicas, y biológicas.

La agricultura, ganadería comercial y las granjas avícolas, son las fuentes de muchos contaminantes orgánicos e inorgánicos de las aguas superficiales y subterráneas. Estos contaminantes incluyen tanto sedimentos procedentes de la erosión de las tierras de cultivo como compuestos de fósforo y nitrógeno que, en parte, proceden de los residuos animales y los fertilizantes comerciales; Los residuos animales tienen un alto contenido en nitrógeno, fósforo y materia consumidora de oxígeno.

La Microcuenca del rio Bejuco posee gran importancia para el desarrollo de todas las actividades de las comunidades que utilizan el agua; la misma que ha sido por muchos años de valor económico para dichas poblaciones, como para el consumo humano, actividades pecuarias, turismo, y conservación de ecosistemas, entre otros.

En la actualidad el recurso hídrico tiene como consecuencia el crecimiento de la población, el incremento de las actividades agropecuarias y el establecimiento de sitios humanos en zonas no adecuadas, lo cual ha llevado a unacompetencia por los recursos limitados de agua dulce. La carencia de programas de superación de la pobreza, ha contribuido a personas que viven en condiciones precarias a sobreexplotar los recursos naturales, lo cual afecta negativamente la calidad del recurso agua; El uso no adecuado del suelo, la falta de conciencia de conservación de los recursos naturales, y baja escolaridad de los pobladores, casi todos coinciden enla contaminación e insalubridad existente como efecto inmediato de la degradación de losrecursos. El deterioro de la calidad del agua causado por la contaminación influye sobre el uso de las aguas curso abajo, amenaza la salud humana y el funcionamiento de los sistemasacuáticos, reduciendo así la efectiva disponibilidad e incrementando la competencia por dicho recurso.

La investigación se enfocó en la evaluación dela calidad del agua en la Microcuencadel ríoBejuco mediante indicadores físicos-químicos y microbiológicos, con resultados que permitieron determinar el grado de

contaminación que afecta a la parte media y bajadel río, y a la vezdisponer de una base de registro, generando información que es de utilidad para la comunidad en general.

1.3. OBJETIVOS

1.3.1. OBJETIVO GENERAL

Evaluar la calidad del agua del río Bejuco mediante indicadores físicosquímicos y microbiológicos, interrelacionándolos con el índice de Calidad de Agua (ICA) y el TULSMA para establecer sus usos agrícola y doméstico en la época seca y lluviosa.

1.3.2. OBJETIVO ESPECÍFICO

- ❖ Identificar los puntos de muestreo en la Microcuenca del río Bejuco.
- Determinar la calidad del agua en la Microcuenca del ríoBejuco mediante el uso de indicadores físicos-químicos y microbiológicos.
- ❖ Realizar un análisis comparativo entre el índice de calidad de agua de acuerdo a normativas ICA y TULSMA.
- Socializar la investigación con los respectivos organismos institucionales y de control.

1.4. HIPÓTESIS

La evaluación de la calidad del agua en la Microcuenca del río Bejuco empleando parámetros físico-químicos y microbiológicos permitirá determinar su grado de contaminación yafectación.

CAPÍTULO II. MARCO TEÓRICO

2.1. FUNDAMENTO DE LA QUÍMICA DEL AGUA

El agua puede contener una gran variedad de impurezas, en el ciclo hidrológico que ha experimentado previamente. Cuando las impurezas representan elementos nocivos para el uso que son destinadas el agua las denominamos contaminantes por lo tanto, es el grado de calidad requerido el que determina si una impureza es contaminante o no (Romero,1996).

2.2. CALIDAD DEL AGUA

Calidad del agua, condición general que permite que el agua se emplee para usos concretos. Está determinada por la hidrología, la fisicoquímica y la biología de la masa de agua a que se refiere. Las características hidrológicasson importantes ya que indican el origen, cantidad del agua y el tiempo de permanencia, entre otros datos(Tincopa, 2005).

2.2.1. IMPORTANCIA DE LA CALIDAD DEL AGUA

El agua es un componente de nuestra naturaleza que ha estado presente en la tierra desde hace más de 3.000 millones de años, ocupando tres cuartas partes de la superficie del planeta. Su naturaleza se compone de tres átomos, dos de oxigeno que unidos entre si forman una molécula de agua H2O, la unidad mínima en que se puede encontrar. La forma en que estas moléculas se unen entre sí determinará la forma en que encontramos el agua en nuestro entorno; como líquidos, en lluvias, ríos, océanos, camanchaca, etc., como sólidos en témpanos y nieves o como gas en las nubes.

Gran parte del agua de nuestro planeta, alrededor del 98%, corresponde a agua salada que se encuentra en mares y océanos, el agua dulce que poseemos en un 69% corresponde a agua atrapada en glaciares y nieves eternas, un 30% está constituido por aguas subterráneas y una cantidad no superior al 0,7% se encuentra en forma de ríos y lagos (Gómez, 2002).

El peligro de que ciertos elementos solubles se incorporen al agua, y aún más peligroso, si estos elementos están en contacto directo con estas fuentes de agua, provocarán enfermedades en la salud pública. Las implicaciones de consumir agua contaminada son muchas: En el contexto de la salud pública se establece que aproximadamente un 80% de todas las enfermedades y más de una tercera parte de las defunciones en los países en vías de desarrollo tienen principal causa la ingestión del agua contaminada. Se estima que el 70% de la población que vive en áreas rurales de países en desarrollo, está principalmente relacionada con la contaminación de agua por heces fecales, la contaminación por fuentes no localizadas contribuye significativamente con niveles altos de agentes patógenos en las fuentes de aguas superficiales, especialmente por coliformes fecales de origen humano y animal (Siles, 2003).

Según la OMS aproximadamente mil quinientos millones de personas en el mundo carecen de agua potable, y cinco millones mueren anualmente a causa de enfermedades trasmitidas por medios de agua. Además se, manifiesta que la disponibilidad de agua es desigual en el mundo, en América latina la cantidad de agua por habitante es mucho de la que dispone n otros contenidos: 48.000 m por habitante, comparado con 21.300 en Norteamérica, 9.400 en África, 5.100 en Asia y 4.400 en Europa.

Sin embargo, estos datos no revelan la realidad que se tiene en cada localidad, así, en América latina esta gran cantidad de agua disponible en realidad está concentrada en las zonas húmedas del continente, que ocupa un 39% de la región de América latina y el Caribe, donde se reciben precipitaciones tan abundantes que se forman mucho ríos navegables que finalmente confluyen en el rio más grande del mundo, el Amazonas (Peña, 2003).

2.3. CONTAMINACIÓN DEL AGUA

Es incorporación de materias extrañas como microorganismos, productos químicos, residuos industriales y de otros tipos, o aguas residuales. Estas materias deterioran la calidad del agua y la hacen inútil para los usos pretendidos

e implica una alteración perjudicial de su calidad en relación con los usos posteriores o con su función ecológica (Rodríguez, 2007).

2.4. INFLUENCIA DEL USO DEL SUELO SOBRE LA CALIDAD DE AGUA

El uso y manejo que se hace del suelo provoca con gran frecuencia una alteración tan profunda de sus propiedades que determina una pérdida gradual de su capacidad productiva, de su fertilidad, de sus posibilidades y aprovechamiento, en ocasiones el suelo puede llegar a experimentar una pérdida de calidad tan acentuada que le incapacite para ejercer las múltiples funciones que puede realizar. La calidad del agua a nivel físico-químico tiene alteraciones importantes debido al cambio de uso de suelo, factor principal que influye en la vulnerabilidad del recurso. A la medida que disminuye la franja ribereña de las Microcuenca y se incrementa el área de ganadería, con el consecuente acceso de los animales al cauce, también aumenta el aporte de materia contaminante (Mitchell ,1991).

2.5. LA ACTIVIDAD GANADERA Y SU RELACIÓN CON LA CALIDAD DEL AGUA

La ganadería es una de las prácticas de uso de la tierra más comunes, con impactos sobre la calidad del recurso hídrico. Cuando se da un sobrepastoreo, es un efecto muy negativo desde el punto de vista bacteriológico y químico, generalmente este efecto se observa en lugares de alta precipitación, fuertes pendientes, cercanos a fuentes de agua. Los contaminantes provenientes de estas áreas son arrastradas con facilidad y rapidez hacia los cuerpos de agua. El impacto más significativo se da en el caso de que estas fuentes hídricas estén desprovistas de cobertura vegetal que les deprotección, o la ausencia de una zona de amortiguamiento, ya que estas corrientes arrastran microorganismos patógenos, nutrientes y sólidos suspensos (Mendoza ,1989).

2.6. LA AGRICULTURA Y SU INFLUENCIA EN LA CALIDAD DEL AGUA

La agricultura constituye una de las actividades más practicadas en el mundo, particularmente en áreas rurales. Su impacto sobre la calidad del agua es de muchaimportancia. Aproximadamente el 70% de los recursos hídricos del mundo son usados por laagricultura, lo cual significa el principal factor de la degradación de éstos, como consecuenciade la erosión y de la escorrentía química (Mendoza, 1989).

2.7. ACTIVIDADES HUMANAS

La recepción de aguas contaminadas se da a través de dos fenómenos: las aguas de lluvias que discurren por el suelo y el subsuelo, que luego de su contacto con ella arrastran sub productos de las actividades humanas que cambian su calidad natural, y las aguas que luego de ser usada y transformada su calidad físico-química, son reintegradas a los cuerpos de aguas naturales. De igual forma, los acuíferos que son otra fuente de abastecimiento de agua pueden ser contaminadas por las actividades del ser humano (Mendoza ,1989).

2.8. INVESTIGACIONES SOBRE CALIDAD DE AGUA EN ECUADOR

En los Andes ecuatorianos estas presiones se reflejan en el aumento cada día de conflictos por su uso y por la contaminación del agua. En las Microcuenca de los ríos llangama y Alumbre las actividades humanas, tanto agrícolas como ganaderas, han provocado el deterioro de los páramos y la deforestación de los bosques cuya consecuencia se refleja en la disminución de la cantidad y calidad del agua (Calles, 2007).

La contaminación del agua superficial proveniente de fuentes domésticas ocurre alrededor de todo el país, especialmente cerca de las áreas altamente pobladas. Casi todos los ríos del país cercanos a las áreas urbanas tienen altos niveles de DBO, nitrógeno y fósforo. La contaminación del agua está eliminando muchos

recursos de aguas potenciales y existentes. La mayoría de la contaminación proviene de desperdicios domésticos, químicos agrícolas (especialmente a lo largo de las riberas). Las grandes plantaciones utilizan grandes cantidades de químicos agrícolas; Casi todas las corrientes y los sistemas de agua superficial presentan problemas con pesticidas.

La deforestación y las inadecuadas prácticas del uso del terrenohan acelerado la erosión de la tierra, han incrementado las cargasde sedimentos en los ríos y arroyos. Las altas cargas de sedimentosinyectadas en los arroyos han disminuido considerablemente lacapacidad de almacenamiento de muchas de las represas y haninducido importantes cambios geomórficos en la mayoría de losarroyos. La Organización del Régimen Institucional del Agua en el ecuador hasta abril del 2008 era el Consejo Nacional de RecursosHídrico (CNRH), el organismo encargado de conducir yregir los procesos de gestión de los recursos hídricos. Apartir de mayo del 2008, mediante Decreto Ejecutivo 1088se reemplazó al CNRH por la Secretaría Nacional del Agua (SENAGUA) hasta la actualidad (Paredes 2007).

2.9. PARÁMETROS DE CALIDAD FÍSICO-QUÍMICOS

El agua, se comporta como un disolvente tanto de compuestos orgánicos como inorgánicos, ya sean de naturaleza polar o apolar; de forma que podemos encontrar una gran cantidad de sustancias sólidas, líquidas y gaseosas diferentes que modifican sus propiedades, y comportamientos como disolvente, lo que la convierte en un sistema complejo sobre el que habrá que realizar análisis tanto cualitativos como cuantitativos con objeto de conocer el tipo y grado de alteración que ha sufrido, y consecuentemente como se encuentran modificadas sus propiedades para usos posteriores. Puesto que la alteración de la calidad del agua puede venir provocada tanto por efectos naturales como por la actuación humana derivada de la actividad industrial, agropecuaria, doméstica o de cualquier otra índole, no es de extrañar que el análisis de los parámetros de calidad del agua se deba realizar a todo tipo de aguas, independientemente de su origen (Bueno et al., 1997).

2.10. PARÁMETROS DE CALIDAD MICROBIOLÓGICOS

Todos los organismos que se encuentran en el agua son importantes en el momento de establecer el control de la calidad de la misma sin considerar si tienen su medio natural de vida en el agua o pertenecen a poblaciones transitorias introducidas por el ser humano; Los parámetros microbiológicos se usan como índices de calidad de aguas. Hay muchos seres vivos que se emplean como indicadores de la calidad de agua. Así, según predominen unos organismos u otros, podremos saber el estado de un agua. Además sabemos que, en el caso de un vertido, el contaminante se diluye en el agua y, a veces, se hace difícil su detección, pero el efecto causado al ecosistema perdura durante más tiempo (Mara, 1990).

2.11.SELECCIÓN DEL SITIO DE MUESTREO

Antes de elaborar un programa de muestreo, es necesario y útil, considerar unos determinados factores que nos definan los objetivos del programa de muestreo, estos factores son por ejemplo los lugares de toma de muestras, los procedimientos de toma, la frecuencia, la duración, el tratamiento de las muestras y los análisis a realizar.

Los principales objetivos del programa de muestra pueden ser:

- 1) Control de calidad
- 2) Caracterización de los parámetros
- 3) Identificación de las fuentes de contaminación

El laboratorio de análisis es quien debe dirigir y orientar el programa de la toma de muestras, tras consultar al destinatario de los resultados del análisis.

En general, si las posibilidades operativas y económicas lo permiten se deberían establecer las siguientes etapas en un programa de muestreo.

a) Estudios preliminares

- b) Nº de muestras a tomar y parámetros a determinar
- c) Tipos de muestras y muestreos
- d) Frecuencia y cantidad de muestra
- e) Técnicas a aplicar en el muestreo

El número de muestras a tomar y los parámetros a analizar dependerán del grado de amplitud que se pretende conseguir, del tipo de agua y de las propias posibilidades e infraestructura del laboratorio (DIGESA,2007).

2.11.1. DESARROLLO DE PROGRAMAS DE MONITOREO

El programa de monitoreo incluye la definición clara de los objetivos, las autoridades involucradas, responsabilidades y tareas delegadas a cada uno de ellos para su cumplimiento. Para el desarrollo de las actividades de muestreo se debe conocer, la ubicación de los sitios y las rutas de acceso a estos.

La programación del monitoreo debe realizarse con la suficiente anticipación, de tal manera que se efectúen todos los trámites (en caso de ser requeridos) y todas las actividades que demanda su alistamiento; por lo tanto es recomendable realizar paso a paso las actividades que se describen a continuación, ya que en la mayoría de casos los sitios de muestreo quedan alejados del sitio de trabajo, impidiendo el regreso por equipos y materiales olvidados y el reabastecimiento de provisiones y/o repuestos, que son necesarios para las actividades de muestreo.

Antes de realizar el desplazamiento a campo es importante incluir dentro del grupo de muestreo, una persona que tenga pleno conocimiento de la ubicación del sitio o contar con un mapa detallado de la zona. Es necesario determinar la ruta que se va a seguir, con el fin de optimizar el tiempo.

Para los casos en los cuales se vaya por primera vez al sitio de muestreo es aconsejable contactar una persona de la región que sirva de guía. Adicionalmente, se deberá contar con los equipos y materiales necesarios para levantar una estructura (mojón, estaca, entre otras), que permita realizar siempre

en el mismo punto el muestreo, de tal manera que en futuras visitas sea fácilmente identificable, manteniendo la historia del sitio de muestreo (DIGESA,2007).

2.12.MONITOREO DE AGUA

La recolección de las muestras depende de los procedimientos analíticos empleado unos de estos casos es la muestras compuestas que en la mayoría de los casos, el término "muestra compuesta" se refiere a una combinación de muestras sencillas o puntuales tomadas en el mismo sitio durante diferentes tiempos. Algunas veces el término "compuesta en tiempo (*time-composite*)" se usa para distinguir este tipo de muestras de otras. El uso de muestras compuestas representa un ahorro sustancial en costo y esfuerzo del laboratorio comparativamente con el análisis por separado de un gran número de muestras y su consecuente cálculo de promedios. Para estos propósitos, se considera estándar para la mayoría de determinaciones una muestra compuesta que representa un período de 24 h. Sin embargo, bajo otras circunstancias puede ser preferible una muestra compuesta que represente un cambio, o un menor lapso de tiempo, o un ciclo completo de una operación periódica (Garay *et al.*, 1993).

2.12.1. RECOLECCIÓN DE MUESTRA

Una muestra es tomada de acuerdo al tipo de análisis y al propósito del programa de muestreo; tomando en cuenta si la descarga ocurre en un tiempo específico, durante un cierto periodo, de trabajo un ciclo o un proceso de manufactura en particular.

Si existen más de dos sitios de muestreo, puede ser necesario espaciar el tiempo de obtención de cada muestra. Finalmente, puede darse el caso que sea deseable tomar una muestra al azar en lugar de muestras compuestas y viceversa (Bravo, 1992).

2.12.2. VOLUMEN DE LA MUESTRA

La cantidad de muestra a ser tomada depende del número de parámetros e ser analizados y del tipo de análisis por realizarse, así como también de la concentración deducida del parámetro a determinarse. El volumen de la muestra debe ser lo suficiente para cumplir con todos los requerimientos del análisis, más una cantidad igual como muestra testigo. Se debe consultar al laboratorio analítico que efectué el análisis sobre la cantidad de la muestra requerida. Para el análisis de rutina, el volumen mínimo de una muestra simple o al azar estará entre 263 litros. Adicionalmente, de acuerdo con las necesidades, se deben tomar muestras por duplicado, periódicamente, para asegurar el control de calidad (Bravo, 1992).

2.12.3. PRESERVACIÓN DE MUESTRAS

Dado que algunos tipos de muestras tienen tiempos de conservación restringidos, la planificación del trabajo diario debe ser hecha con mucho cuidado de manera tal que se pueda asegurar que las unidades muestréales llegaran al sitio de análisis dentro del horario de trabajo y sin exceder el máximo de horas (días) posibles para ese análisis en particular.

Las muestras bacteriológicas son por lo general empacadas en heladeras, lo cual sirven para propósito siempre y cuando sea utilizadas solo con este objetivo en el futuro, no son reemplazables por bolsas de hielo excepto en emergencias.

Para evitar el deterioro de las muestras se debe tener en cuenta que:

No se debe permitir que las muestras se calienten, ellas deben almacenarse en contenedores que permitan enfriarlas a unos 4°C, por otra parte no se debe permitir que las muestras se congelen a no ser que esto sea parte del protocolo de conservación.

Las muestra biológicas deben ser fijadas con el preservador más adecuadas a la naturaleza de los organismos muestreados lo cual deben ser enviadas al

laboratorio sin demora de manera que estas lleguen preferiblemente dentro de las 24 horas de obtenida (Zaixso, 2002).

2.13.TEXTO UNIFICADO LEGISLACIÓN AMBIENTAL SECUNDARIA (TULSMA)

Las normas de calidad ambiental es la normativa jurídica vigente, que rigen actualmente en el país con el fin de proteger recursos naturales, es decir los ecosistemas, especies de fauna y flora así como también el agua y suelo, lo cual permita garantizar el respeto al derecho colectivo de todos los habitantes a vivir en un ambiente sanos, ecológicamente equilibrado y libre de contaminación.

Los objetivos estratégicos institucionales son los siguientes:

- 1. Conservar y utilizar sustentablemente la biodiversidad, respetando la multiculturalidad y los conocimientos ancestrales.
- 2. Prevenir la contaminación, mantener y recuperar la calidad ambiental.
- 3. Mantener y mejorar la cantidad y calidad del agua, manejando sustentablemente las cuencas hidrográficas.
- 4. Reducir el riesgo ambiental y la vulnerabilidad de los ecosistemas.
- 5. Integrar sectorial, administrativa y territorialmente la gestión ambiental nacional y local (TULSMA, 2004).

2.14.INDICE DE CALIDAD DEL AGUA (ICA)

El empleo de un índice de Calidad de Agua fue propuesta en el año 1965, sin embargo, los índices no fueron aceptados y utilizados sino a partir de los años setenta cuando los ICA adquieren relevancia para la evaluación del recurso hídrico. Hasta la fecha se ha generado una gran cantidad de índices de Calidad para el agua dependiendo del estado y del cuerpo hídrico que se pretenda estudiar y la utilización que se le quiera asignar. Diversos estudios realizados en los últimos años han revelado que existen a lo menos 30 índices de calidad formulado de acuerdo a sus propios objetivos. Con esta introducción se resalta el hecho que existen innumerables ICA incluso de acuerdo al uso pretendido del

recurso hídrico y que, la asignación de un número determinado para señalar un índice de calidad, es una tarea sumamente compleja (Horton 1965).

2.14.1. PARÁMETRO DE LA CALIDAD DEL AGUA

Antes de proceder a una descripciónde los procesos disponibles para mejorar la calidad de las aguas, es conveniente revisar los parámetros utilizados para definir su calidad. Algunos de estos parámetros se utilizan en el control de tratamiento realizando mediciones de forma continua o discreta. Además de las definiciones se resume sus efectos más importantes, la forma usual de análisis o medición y el tratamiento adecuado. Los parámetros pueden clasificarse en cuatro grandes grupos: físicos, químicos, biológicos y radiológicos (Romero, 1996).

a. pH

La acidez de un agua es una medida de la cantidad total de substancias acidas (H+) presentes en esa agua, expresados como parte por millón de carbonato de calcio equivalente. Se ha demostrado que un equivalente de un ácido (H+) es igual al equivalente de una base (OH-)(StandardMethods, 1989).

b. COLOR

El color del agua puede estar condicionado por la presencia de iones metálicos naturales (hierro y manganeso), de humus y turbas, de plancton, de restos vegetales y de residuos industriales. Tal coloración se elimina para adaptar un agua a usos generales e industriales. Las aguas residuales coloreadas suelen requerir la suspensión de color antes del desagüe (StandardMethods, 1989).

c. TURBIDEZ

La turbidez del agua está relacionada con sustancias que se hallan como dispersiones gruesas. La turbidez no puede ser medida por métodos químicos sino x métodos físicos. La turbidez del agua puede ser medida con equipos específicos (turbidimetro) o con sondas multipropósito. Por lo general la turbidez se mide en NTU (Unidad Nefelometrícas de Turbidez), si bien existen otras unidades FTU (Unidades Formazina de Turbidez)(Standard Methods. 1989).

d. SÓLIDOS SUSPENDIDOS

Es una medida de las sustancias orgánicas e inorgánicas, en forma molecular, ionizada o micro-granular, que contienen los líquidos, en nuestro caso, el agua. Para considerarse TDS, las sustancias deben ser lo suficientemente pequeñas como para pasar una criba o filtración del tamaño de dos micras (StandardMethods, 1989).

e. SÓLIDOS TOTALES

Es una medida de las sales disueltas en una muestra de agua después de la remoción de sólidos suspendidos; también se define como la cantidad de residuos remanentes después que la evaporación del agua ocurre. Es común observarlos en terrenos agrícolas que han sufrido procesos fuertes de escorrentía(StandardMethods, 1989).

f. NITRÓGENO DE NITRATOS

Este elemento es una forma de nitrógeno que las plantas necesitan para crecer; en la agricultura se usan los fertilizantes con nitrógeno para enriquecer el suelo. Desafortunadamente los nitratos pueden contaminar las fuentes de agua potable. Altos contenidos de nitrato en el agua pueden causar la enfermedad llamada síndrome del bebé azul. Los nitratos cambian la hemoglobina que transporta oxígeno a meta hemoglobina, que no lo transporta; el principal aporte de nitratos se debe al uso excesivo de fertilizantes químicos (StandardMethods, 1989).

g. ALCALINIDAD

La alcalinidad de agua es la medida de su capacidad para neutralizar ácidos. También se utiliza el término capacidad de neutralización de ácidos (CNA). La alcalinidad de las aguas naturales se debe primariamente a las sales de ácidos débiles, aunque las bases débiles o fuertes también pueden contribuir. Los bicarbonatos son los compuestos que más contribuyen a la alcalinidad, puesto que se forman en cantidades considerables por la acción del dióxido de carbono sobre materia básica del suelo. En ciertas condiciones las aguas naturales

pueden ser alcalinas debido a las cantidades apreciable de hidróxido y carbonatos(StandardMethods, 1989).

h. DUREZA TOTAL

En química, se denomina dureza del agua a la concentración de compuestos minerales que hay en una determinada cantidad de agua, en particular sales de magnesio y calcio. Son estas las causantes de la dureza del agua y el grado de dureza es directamente proporcional a la concentración de sales metálicas(StandardMethods, 1989).

i. DEMANDA BIOQUÍMICA DE OXÍGENO

Es un parámetro que representa la materia orgánica biodegradable. Es la más usada para determinar la eficiencia de los tratamientos que se aplican a los líquidos residuales. Se da cuando ciertas sustancias presentes en las aguas residuales, al verterse a un curso de agua, captan el oxígeno existente debido a la presencia de sustancias químicas reductoras. Esta es una medida de la estimación de las materias oxidables presentes en el agua, cualquiera que sea su origen orgánico o mineral como el hierro, nitritos, amoniaco, sulfuro y cloruros(StandardMethods, 1989).

j. COLIFORMES TOTALES

La denominación genérica coliformes designa a un grupo de especies bacterianas que tienen ciertas características bioquímicas en común e importancia relevante como indicadores de contaminación del agua y los alimentos.

Tradicionalmente se los ha considerado como indicadores de contaminación fecal en el control de calidad del agua destinada al consumo humano en razón de que, en los medios acuáticos, los coliformes son más resistentes que las bacterias patógenas intestinales y porque su origen es principalmente fecal, por tanto su ausencia indica que el agua es bacteriológicamente segura(StandardMethods, 1989).

CAPÍTULO III. DESARROLLOMETODOLÓGICO

3.1. MÉTODO DE INVESTIGACIÓN

Se utilizó el método lógico inductivo, mediante el cual, basándose en información técnica generada en las áreas representativas del río Bejuco permitió extrapolar los resultados de la calidad de su recurso hídrico. Finalizada la fase de generación y sistematización de la información primaria, éstas se interrelacionaron aplicando la metodología ICA, diseñada para el análisis de la información temática sobre calidad de agua, a través del cual se pudo interpretar, concluir y recomendar los procesos de mejoramiento de la calidad de agua de la Microcuenca del río Bejuco.

3.2. UBICACIÓN

La investigación se realizó, en la Microcuencadel rio Bejuco en el cantón Bolívar (Anexo1), el cual geográficamente se encuentra en la provincia de Manabí a 0°, 50 minutos, 39 S de latitud Sur y a 80° 9 minutos y 33 S de longitud Oeste. Limita al Norte con el cantón Chone, al Sur con los cantones Portoviejo, Junín y Santa Ana, al este con el Cantón Pichincha y al Oeste con Tosagua. Puntualmente la represa la Esperanza está ubicada en la Parroquia de Quiroga aproximadamente a 12 kilómetros de la cabecera cantonal del cantón Bolívar (Avilés, 2002).

3.3. GEOGRAFÍA

En el cantón Bolívar se puede apreciar una geografía irregular, por la presencia de colinas y cerros, la montaña de Camote, Bejuco, Membrillo y Quiroga; también se encuentra atravesado por el rio Carrizal y Mosca. El Carrizal es el principal rio del cantón, es navegable y está formado por diversos afluentes como rio el Barro, Severino, Tigre, Rio Chico, Bejuco, Camarón, Matapalo, Platanales y un sinnúmero de esteros (Avilés, 2002).

3.4. CARACTERÍSTICAS SOCIOECONÓMICAS

El Cantón Bolívar es un cantón eminentemente agrícola predominando productos como cacao, café y cítricos. Aproximadamente en el Cantón se producen alrededor de 13.000 hectáreas entre cacao y café. Alrededor existen 520 fincas, de las cuales 360 corresponde al cultivo de cacao y 160 al cultivo de café, tomando en consideración un promedio general de 25 hectáreas por finqueros (Avilés, 2002).

3.5. POBLACIÓN

La población del cantón Bolívar, según el Censo 2010 de Población y Vivienda, es de 40.735. La cabecera cantonal cuenta con aproximadamente 25.000 habitantes se ubica en el sector rural perteneciente a las parroquias Membrillo y Quiroga (Avilés, 2010).

3.6. DURACIÓN DEL TRABAJO

El tiempo de duración del estudio corresponde a 12 meses (dos épocas de muestreo seca y lluviosa).

3.7. VARIABLES EN ESTUDIO

Variable independiente

Calidad del Agua en la Microcuenca del río Bejuco en épocas seca y lluviosa

Variable dependiente

Parámetros físicos, químicos y microbiológicos de análisis

Indicadores

- Indicadores físicos: Potencial de hidrógeno (pH), Sólidos totales,
 Sólidos suspendidos, Turbidez, Color.
- Indicadores químicos: Alcalinidad, Demanda Bioquímica de Oxigeno (DBO₅), nitritos y dureza total.
- Indicadores microbiológicos: Unidades Formadoras de Colonias (UFC-coliformes totales.

3.8. PROCEDIMIENTO

FASE 1: IDENTIFICACIÓN DE LOS PUNTOS DE MUESTREO EN LA MICROCUENCA DEL RIO BEJUCO

Se identificaron tres estaciones demuestreos en la Microcuenca del rio Bejuco y se los dividió en seispuntos de muestreo, lo cuales segeoreferenciaron a través del uso de un navegador GPSgarmin 60 CX (Anexo 2)

FASE 2: DETERMINACIÓN DE LA CALIDAD DEL AGUA EN EL RÍO BEJUCO, MEDIANTE EL USO DE INDICADORES FÍSICO-QUÍMICOS Y MICROBIOLÓGICOS BAJO LA NORMATIVA STANDARD METHODS(1989)

Se realizaron análisis físicos, químicos y microbiológicos en los sitios definidos (Anexos3). El monitoreo seefectuó en dos repeticiones (época seca y lluviosa) y para el cumplimiento de ésta actividad se utilizó el laboratorio de química analítica y de microbiología de la ESPAM "MFL" con la finalidad de determinar la calidad del agua del rio Bejuco en las dos épocas del año, mediante la evaluación de los indicadores especificados en el cuadro 3.1

Cuadro3.1. Parámetros, equipos y métodos utilizados en el laboratorio.

Análisis	Equipos	Métodos	
 Físicos pH Color verdadero Turbidez Sólidos totales Sólidos suspendidos 	 Potenciómetro NOVA 60 NOVA 60 Estufa, Plancha eléctrica Bomba de vacío 	STANDARD METHODS (edi 17 1989)	
Químicos DB0 ₅ Alcalinidad Dureza total Nitritos	Cámara de DBONingunoNingunoAgitador	STANDARD METHODS (edi 17 1989)	
MicrobiológicosColiformes totales	Auto Clave	NPM	

FASE 3: REALIZACIÓN DEL ANÁLISIS COMPARATIVO ENTRE EL ÍNDICE DE CALIDAD DE AGUA ICA(HORTON, 1965) Y LOS PARÁMETROS REGULATORIOS ESTABLECIDOS EN EL TULSMA

Finalizada la fase de generación y sistematización de la información, los resultados obtenidos fueron llevados a un cálculo establecido para el Índice de Calidad de agua propuesto por la Comisión Nacional del agua de México: para lo cual se realizó una comparación entre el Índice de Calidad de Agua vs. TULSMA. La fórmula del ICA a utilizar es la siguiente:

$$ICA = K \sum CiPi / \sum Pi$$
 (3.1)

Dónde:

- **Ci** = valor porcentual asignado a los parámetros
- **Pi** = Peso de importancia asignado a cada parámetro
- **K** = constante que puede tomar los siguientes valores:
- 1,00 para aguas claras sin aparente contaminación.
- 0,75 para aguas con ligero color, espumas, ligera turbidez aparente no natural.
- 0,50 para aguas con apariencia de estar contaminada y fuerte olor.
- 0,25 para aguas negras que presenten fermentaciones y olores.

Para la aplicación de la formula antes mencionada, se utilizó el Índice de Calidad Ambiental (ICA) para cada parámetro analizado y los rangos de calificación del ICA según el criterio general. A continuación en los cuadros3.2, 3.3 y 3.4 se detallan el uso de cada uno de ellos.

Cuadro3.2. Índice de Calidad Ambiental (ICA)

ÍNDICE DE CALIDAD AMBIENTAL (ICA) Constante para aguas claras sin aparente contaminación (K = 1)				
PARÁMETROS	Peso (Pi)	Valoración Porcentual (Ci)	Ci * Pi	
TOTAL				
ICA				
CATEGORIA				

Cuadro3.3. Escala de Clasificación del Índice de Calidad de Agua enFunción del Uso.

Cua	Cuadro3.3. Escala de Clasificación del Indice de Calidad de Agua enfunción del Uso.						
ICA	Criterio General	Abastecimiento Publico	Recreación	Pesca y Vida Acuática	Industrial y Agrícola		
10 95 90	No Contaminado	No Requiere Purificación	Aceptable Para	Aceptable Para Todos Los Organismos	No Requiere Purificación		
85 80		Ligera Purificación	Cualquier Deporte Acuático		Ligera Purificación		
75 70	Aceptable				Para Algunos Procesos		
65 60	Poco Contaminado	Mayor Necesidad De Tratamiento	tamiento Aceptable Pero No	Aceptable Excepto Para Especies Sensibles	pecies Sin Tratamiento Para La Industria Normal		
55 50		Reco	Recomendable	Dudoso Para Especies Sensibles			
45 40	Contaminado	Dudoso	Dudoso Para El Contacto Directo	Solo Organismos	Tratamiento En La Mayor Parte		
35 30			Sin Contacto Con El Agua	Resistentes	De La Industria		
25 20	20	No Aceptable	Señal De Contaminación		Uso Refringido		
15 10 5 0	Altamente Contaminado	110 / юсршые	No Aceptable	No Aceptable	No Aceptable		

Cuadro3.4. Rangos de calificación del ICA según el criterio general

lca	Criterio general
85-100	No Contaminado
70-84	Aceptable
50-69	Poco Contaminado
30-49	Contaminado
0-29	Altamente contaminado

FASE 4: SOCIALIZACIÓN DE LA INVESTIGACIÓN CON LOS RESPECTIVOS ORGANISMOS INSTITUCIONALES Y DE CONTROL

Una vez analizado e interpretado los resultados obtenidos, se procedió a planificarla posterior reunión con los integrantes del sitio el Bejuco este acto se llevó a efecto el 29 de septiembre del 2012 a las 17:00 pm, la asistencia a éste evento fue mayoritaria por parte de los comuneros de esta zona, además se contó con la presencia de principales autoridades municipales del Cantón Bolívar, a los cuales se les explicó la metodología utilizada e impartió los resultados obtenidos en el trabajo de investigación (Ver anexo 4)

Se realizó la escritura de un artículo científico el mismo que estará disponible en la Dirección de Carrera de Medio Ambiente de la ESPAM "MFL" y después se efectúa la reunión de sustentación previo a la obtención del título de tercer nivel, lo cual servirá de guía para posteriores trabajos investigativos y formar un mejorcriterio en el buen manejo de recursos hídricos.

CAPÍTULOS IV. RESULTADOS Y DISCUSIÓN

4.1.SE HA IDENTIFICADO LA ZONA DE ESTUDIO PARA LA SELECCIÓN DE LOS PUNTOS DE MUESTREO EN LA MICROCUENCA DEL RIO BEJUCO

Se realizó el recorrido a lo largo de la Microcuenca, se definieron seis puntos de muestreo, los cuales se los dividió en tres estaciones el primer lugar conocido como Majagua 1, y Majagua 2, la segunda estación conformada por la Mariposa y la palmita y la tercera por Boca de Bejuco y Tigrecito.

La Microcuenca del rio Bejuco tiene una distribución de 10 kilómetros, esto permitió reconocer la zona de estudio, la realidad social y ambiental por las que atraviesan las comunidades dela Microcuenca del río Bejuco. Los puntos de muestreo fueron seleccionados de acuerdo a lo observado durante el recorrido que se efectuó, en donde se escogieron los puntos de mayor relevancia de acuerdo de la agricultura y la ganadería ya que fueron los factores predominantes en este caso(Ver anexo 1). Estos resultados se asemejan a lo que dice Sánchez, (2005), quien indica que para seleccionar las estaciones a muestrear se considera fácil acceso a los sitios de muestreo, mayor cobertura del problema y confluencia de ríos.Las coordenadas establecidas de los puntos de monitoreo seleccionados se muestran en el cuadro 4.1:

Cuadro 4.1. Selección de puntos de muestreos georeferenciados para la toma de muestras de agua. Época seca y lluviosa 2011.ESPAM MFL.

Estación	Puntos de Muestreo	Coordenadas X	Coordenadas Y	Altura
	Majagua 1	616145	9895755	70
1	Majagua 2	611866	9896931	66
	La palmita	613757	9896960	64
2	La mariposa	613167	9897232	60
	Boca de bejuco	617844	9897020	59
3	Tigrecito	618385	9895833	55

4.2. SE HA REALIZADO ANÁLISIS FÍSICOS, QUÍMICOS Y MICROBIOLÓGICOS DEL AGUA DE LA MICROCUENCA DEL RÍO BEJUCO EN LA ÉPOCA LLUVIOSA Y SECABAJO LA NORMATIVA ESTÁNDAR MÉTODOS 1989

4.2.1. ANÁLISIS FÍSICOS

Los resultados de los análisis físicos de los diferentes indicadoresse muestran a continuación:

4.2.1.1. PONTENCIAL HIDRÓGENO (pH)

a. EPOCA LLUVIOSA

Al ser realizado el análisis depH se evidenció que los resultados obtenidos se encuentran dentro de los límites máximos permisibles para aguas de uso agrícola y doméstico en todas sus estaciones en época lluviosa de acuerdo alTULSMA,2004)

Cuadro4.2. Valores de pH encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica	Segunda replica	Límite máximo permisibles de	Límite máximo permisible de
		04/04/12	25/04/12	uso agrícola	uso domestico
Primera	Majagua 1	7,6	7		
estación	Majagua 2	7,8	7,98		
		11/04/12	02/05/12		
Segunda estación	La mariposa	8,1	7,23	6-9	6-9
CStacion	La palmita	8,23	8,54	0.3	
		18/04/12	09/05/12		
Tercera Estación	Boca de bejuco	8,36	7,91		
	Tigrecito	7,55	7,51		

b. ÉPOCA SECA

El resultado de los análisis de pH realizados determina que están dentro de los límites máximos permisibles para aguas de uso agrícola y doméstico en todas sus estaciones en época seca, de acuerdo alTULSMA(2004).

Cuadro4.3. Valores de pH encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 11/09/12	Segunda replica 17/09/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	7	7		
Estación	Majagua 2	7,5	7,6		
		12/09/12	18/09/12		
Segunda estación	La mariposa	7,4	7	6-9	6-9
estacion	La palmita	8,2	7,3	0-9	0-9
		13/09/12	19/09/12		
Tercera Estación	Boca de bejuco	7	7,5		
	Tigrecito	7,23	7		

4.2.1.2 .COLOR VERDADERO

a. ÉPOCA LLUVIOSA

Luego de haber realizado el análisis de color en las tres estaciones determinadas (Cuadro 4.4), se observó que los resultados obtenidos se encuentran dentro del límite máximo permisible para aguas de uso doméstico en época lluviosa de acuerdo a TULSMA(2004).

Cuadro4.4. Valores de color verdadero encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 04/04/12	Segunda replica 25/04/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	18,4	18,2		
Estación	Majagua 2	18,8	18,4		
		11/04/12	18/04/12		
Segunda estación	La mariposa	25,1	19,23		100
estacion	La palmita	19,9	19,3		100
Tercera	Boca de bejuco	18/04/12 18,5	09/05/12 18,9		
Estación	Tigrecito	17,8	18,1		

b. ÉPOCA SECA

El análisis de color en las tres estaciones determinadas (Cuadro 4.5), muestra que los resultados se encuentran dentro del límite máximo permisible para aguas de uso doméstico en época seca de acuerdo a TULSMA(2004).

Cuadro 4.5. Valores de color verdadero encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 11/09/12	Segunda replica 17/09/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	16,8	15,0		
Estación	Majagua 2	18,8	18,23		
		12/09/12	18/09/12		
Segunda	La mariposa	24,0	21,2		400
estación	La palmita	19,9	19,24		100
	Dago do boiuso	13/09/12	19/09/12		
Tercera Estación	Boca de bejuco	19,12	19,0		
Lotation	Tigrecito	18,3	18,1		

4.2.1.3. TURBIDEZ

a. ÉPOCA LLUVIOSA

Como se muestra en el (cuadro 4.6)los valores determinados están dentro de los límites máximos permisibles para aguas de uso doméstico en todas sus estaciones en época lluviosa de acuerdo a TULSMA(2004).

Cuadro4.6. Valores de turbidez encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 04/04/12	Segunda replica 25/04/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	15	14		
Estación	Majagua 2	100	98		
		11/04/12	18/04/12		
Segunda estación	La mariposa	20	18		100 NTU
estacion	La palmita	17	17		100 1110
		18/04/12	09/05/12		
Tercera Estación	Boca de bejuco	18	18		
	Tigrecito	20	20		

b. ÉPOCA SECA

De acuerdo a los resultados obtenidos (Cuadro 4.7) mediante la realización del análisis de turbidez se pudo observar que los valores se encuentran dentro de los límites máximos permisibles para aguas de uso doméstico en todas sus estaciones en época seca de acuerdo a TULSMA (2004).

Cuadro 4.7. Valores de turbidez encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 11/09/12	Segunda replica 17/09/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	12	99		
Estación	Majagua 2	49	30		
		12/09/12	18/09/12		
Segunda estación	La mariposa	11	9		100 NTU
estacion	La palmita	19	10		100 NTO
T	Boca de bejuco	13/09/12 8	19/09/12 3		
Tercera Estación	Tigrecito	26	17		

4.2.1.4. SOLIDOS TOTALES

a. ÉPOCA LLUVIOSA

De acuerdo a los resultados obtenidos (Cuadro4.8) mediante la realización de análisis de sólidos totales para aguas de uso agrícola se determinó que los valores se encuentran dentro de los límites máximos permisibles en todas sus estaciones en época lluviosa, de acuerdo a TULSMA(2004).

Cuadro4.8. Valores de sólidos totales encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 04/04/12	Segunda replica 25/04/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	100	100	-	
Estación	Majagua 2	190	187		
		11/04/12	18/04/12		
Segunda estación	La mariposa	190	188	3000,0 mg/l	
estacion	La palmita	160	165	0000,0 mg/.	
Tercera Estación	Boca de bejuco	18/04/12 170	09/05/12 170		
LStation	Tigrecito	165	167		

b. ÉPOCA SECA

De acuerdo a los resultados obtenidos (Cuadro 4.9) mediante la realización de análisis de sólidos totales para aguas de uso agrícola se pudo observar que los valores se encuentran dentro de los límites máximos permisibles en todas sus estaciones en época seca, de acuerdo a TULSMA(2004)

Cuadro4.9. Valores de sólidos totales encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 11/09/12	Segunda replica 17/09/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	470	100		
Estación	Majagua 2	910	169		
		12/09/12	18/09/12		
Segunda estación	La mariposa	580	390	3000,0 mg/l	
GSIGGIOTI	La palmita	980	970	5000,0 mg/i	
		13/09/12	19/09/12		
Tercera Estación	Boca de bejuco	710	800		
	Tigrecito	390	370		

4.2.1.6. SOLIDOS SUSPENDIDOS

a. ÉPOCA LLUVIOSA

Los resultados obtenidos (cuadro 4.10) mediante la realización de análisis de sólidos suspendidos para aguas de uso agrícola y domesticas se pudo observar que los valores no se encuentran en la normativa deTULSMA(2004).

Cuadro 4.10. Valores de solidos suspendidos encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 04/04/12	Segunda replica 25/04/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	92	100		
estación	Majagua 2	836	587		
		11/04/12	18/04/12		
Segunda	La mariposa	150	140		
estación	La palmita	135	165		
		18/04/12	09/05/12		
Tercera Estación	Boca de bejuco	110	115		
Lotation	Tigrecito	125	167		

b. ÉPOCA SECA

Los resultados obtenidos (cuadro 4.11) mediante la realización de análisis de sólidos suspendidos para aguas de uso agrícola y domesticas se pudo observar que los valores no se encuentran en la normativa delTULSMA (2004).

Cuadro 4.11. Valores de solidos suspendidos encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 11/09/12	Segunda replica 17/09/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	75	60		
estación	Majagua 2	208	200		
		12/09/12	18/09/12		
Segunda	La mariposa	18	23		
estación	La palmita	136	130		
Tercera	Boca de bejuco	13/09/12 128	19/09/12 120		
Estación	Tigrecito	90	85		

4.3. ANÁLISIS QUÍMICOS

Los resultados de los análisis químicos de los diferentesindicadoresse muestran a continuación:

4.3.1 ALCALINIDAD TOTAL

a. ÉPOCA LLUVIOSA

Los análisis de alcalinidad Total (cuadro 4.12)muestran que los resultados obtenidos tanto para aguas de uso agrícola y doméstico no se encuentran establecidos en la normativadeTULSMA(2004).

Cuadro 4.12. Valores de alcalinidad total encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3.

	Puntos de muestreo	Primera replica 04/04/12	Segunda replica 25/04/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	0,098	0,078		
estación	Majagua 2	0,077	0,134		
		11/04/12	18/04/12		
Segunda estación	La mariposa	0,065	0,090		
estacion	La palmita	0,445	0,180		
Tercera	Boca de bejuco	18/04/12 0,170	09/05/12 0,102		
Estación	Tigrecito	0,228	0,341		

b. ÉPOCA SECA

Los análisis de alcalinidad Total(cuadro 4.13)muestran que tanto para aguas de uso agrícolas y domésticas no se encuentran establecidos en la normativa delTULSMA (2004).

Cuadro 4.13. Valores de alcalinidad total encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 11/09/12	Segunda replica 17/09/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	0,032	0,033		
estación	Majagua 2	0,065	0,070		
		12/09/12	18/09/12		
Segunda estación	La mariposa	0,098	0,101		
estacion	La palmita	0,033	0,040		
		13/09/12	19/09/12		
Tercera Estación	Boca de bejuco	0,019	0,020		
Lotation	Tigrecito	0,024	0,020		

4.3.2. NITRITO

a. ÉPOCA LLUVIOSA

De acuerdo a los resultados obtenidos (cuadro 4.14) mediante la realización de análisis de Nitrito para aguas de uso doméstico se pudo observar que los valores se encuentran dentro de los límites máximos permisibles en todas sus estaciones en época lluviosa, de acuerdo a TULSMA (2004).

Cuadro 4.14. Valores de nitritos encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 04/04/12	Segunda replica 25/04/12	Límite máximo permisibles de uso aagrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	0,05	0,06		
Estación	Majagua 2	0,11	0,12		
		11/04/12	18/04/12		
Segunda estación	La mariposa	0,06	0,06		1.0 mg/l
estacion	La palmita	0,06	0,07		1,0 mg/l
Tercera	Boca de bejuco	18/04/12 0,06	09/05/12 0,06		
Estación	Tigrecito	0,13	0,11		

b. EPOCA SECA

De acuerdo a los resultados obtenidos (cuadro 4.15) a través de la realización de análisis de Nitrito para aguas de uso doméstico se pudo determinar que los valores se encuentran dentro de los límites máximos permisibles en todas sus estaciones en época seca TULSMA(2004).

Cuadro 4.15. Valores de nitritos encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 11/09/12	Segunda replica 17/09/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	0,09	0,10		
Estación	Majagua 2	0,10	0,11		
		12/09/12	18/09/12		
Segunda	La mariposa	0,14	0,12		4.0 //
estación	La palmita	0,09	0,10		1,0 mg/l
Tercera	Boca de bejuco	13/09/12 0,08	19/09/12 0,11		
Estación	Tigrecito	0,12	0,10		

4.3.3. DUREZA TOTAL

a. ÉPOCA LLUVIOSA

Una vez realizados los análisis de Dureza Total (cuadro 4.16) se pudo observar que los resultados obtenidos tanto de la primera como de la segunda replica de las tres estaciones de muestreo establecidas se encuentran dentro de los límites máximos permisibles para agua de uso doméstico en época lluviosa de acuerdo a TULSMA (2004).

Cuadro 4.16. Valores de dureza totalencontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 04/04/12	Segunda replica 25/04/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	120	70		
estación	Majagua 2	111	95		
		11/04/12	02/05/12		
Segunda estación	La mariposa	130	130		500 mm/l
estacion	La palmita	80	100		500 mg/l
Tercera	Boca de bejuco	18/04/12 60	09/05/12 70		
Estación	Tigrecito	115	100		

b. ÉPOCA SECA

Los resultados muestran que los análisis de Dureza Total (Cuadro 4,17), tanto de la primera como de la segunda replica de las tres estaciones de muestreo establecidas se encuentran dentro de los límites máximos permisibles para agua de uso doméstico en época seca, de acuerdo a TULSMA (2004).

Cuadro 4.17. Valores de dureza total encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 11/09/12	Segunda replica 17/09/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	134	60		
Estación	Majagua 2	73	234		
		12/09/12	18/09/12		
Segunda estación	La mariposa	120	100		500 mg/l
estación	La palmita	92	65		300 mg/i
		13/09/12	19/09/12		
Tercera Estación	Boca de bejuco	130	86		
Lotabion	Tigrecito	170	65		

4.3.4.DBO⁵

a. ÉPOCA LLUVIOSA

De acuerdo a los resultados obtenidos (cuadro 4.18) mediante la realización de análisis de DBO₅ para aguas de uso doméstico se pudo verificar que todos los resultados están fuera de los límites máximos permisibles excepto los valores en Majagua 1 en sus dos réplicas se encuentran normales, de acuerdo a TULSMA (2004).

Cuadro 4.18. Valores deDBO⁵ encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 04/04/12	Segunda replica 25/04/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	2	2		
Estación	Majagua 2	4	6		
		11/04/12	02/05/12		
Segunda estación	La mariposa	6	7		2,0 mg/l
estacion	La palmita	7	6		
Tercera	Boca de bejuco	18/04/12 8	09/05/12 7		
Estación	Tigrecito	8	8		

b. ÉPOCA SECA

De acuerdo a los resultados obtenidos mediante (cuadro 4.19) la realización de análisis de DBO₅ para aguas de uso doméstico se pudo verificar que los valores se encuentran fuera de los límites máximos permisibles en todas sus estaciones con sus respectivas replicas, de acuerdo aTULSMA(2004).

Cuadro 4.19. Valores de DBO⁵ encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 11/09/12	Segunda replica 17/09/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	6	5		
estación	Majagua 2	4	6		
		12/09/12	18/09/12		
Segunda estación	La mariposa	8	7		0.0
estacion	La palmita	8	8		2,0 mg/l
		13/09/12	19/09/12		
Tercera Estación	Boca de bejuco	8	8		
Lotacion	Tigrecito	7	8		

4.2.3. ANÁLISIS MICROBIOLÓGICOS

Los resultados de los análisis microbiológicos de las diferentes variables se muestran a continuación:

4.2.3.1. COLIFORMES TOTALES

a. EPOCA LLUVIOSA

Una vez obtenidos los resultados de ColiformesTotales (cuadro 4.20) mediante la realización de análisis en el laboratorio seobservó que en la primera estación, en ambas replicas realizadas los resultados obtenidos en época lluviosa están dentro del límite máximo permisibles tanto para uso agrícola como para uso doméstico.

Cuadro 4.20. Valores de coliformes totales encontrados para calidad de agua en el río Bejuco en época lluviosa. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 10/04/12	Segunda replica 19/04/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	400	350		
Estación	Majagua 2	1000	900		
		13/04/12	23/04/12		
Segunda estación	La mariposa	320	320	1000	3000 nmp/100 ml
estacion	La palmita	200	200	Nmp/100 ml	
Tercera	Boca de bejuco	16/04/12 390	26/05/12 350		
Estación	Tigrecito	300	120		

b. ÉPOCA SECA

Una vez obtenidos los resultados de ColiformesTotales (Cuadro 4.21) mediante la realización de análisis en el laboratorio seobservó que en la primera estación, en ambas replicas realizadas los resultados obtenidos en época seca están dentro del límite máximo permisibles tanto para uso agrícola como para uso doméstico.

Cuadro 4.21. Valores de coliformes totales encontrados para calidad de agua en el río Bejuco en época seca. Estación 1, 2 y 3

	Puntos de muestreo	Primera replica 11/09/12	Segunda replica 17/09/12	Límite máximo permisibles de uso agrícola	Límite máximo permisible de uso domestico
Primera	Majagua 1	372	234		
estación	Majagua 2	156	129		
		12/09/12	18/09/12		
Segunda	La mariposa	567	378	1000	3000 nmp/100 ml
estación	La palmita	395	467	Nmp/100 ml	
		13/09/12	19/09/12		
Tercera Estación	Boca de bejuco	330	235		
	Tigrecito	140	98		

4.3. INTERRELACIÓN Y DISCUSIÓN DE LOS RESULTADOS LOGRADOS APLICANDO LA NORMATIVA ICAPARAESTABLECERSUUSO AGRÍCOLA Y DOMÉSTICO, EN LA ÉPOCA LLUVIOSA Y SECA.

4.3.1.ÉPOCA LLUVIOSA

Para el cálculo del índice de calidad del agua se lo realizo con base a las fórmulasde los cuadros.3.1, 3.2, 3.3, y 3.4. Sus resultados se presentan en la primera estación en los cuadros 4.22 a 4.25, y de la segunda estación 4.30 a 4.33, la tercera estación en 4.38 a 4.41

Efectuando el análisis de resultados de acuerdo a cada estación con su respectiva replica luego de haber aplicado el Índice de Calidad del Agua (ICA) se evidenció que de acuerdo al criterio general es Poco contaminado, según su abastecimiento es de mayor necesidad de tratamiento, según su recreación esdudoso para el contacto directo, según su pesca y vida acuática es dudoso para especies sensibles y para su uso industrial y agrícola essin tratamiento para la industria normal. Lo que evidencia que el agua del río Bejuco pese a que es afectado por la deforestación y con ello deslaves de tierras en las riberas del rio acompañadas de químicos a causa de la agricultura lo cual influye negativamente acompañada de las actividades humanas que se despliegan en sus alrededores, porque en este sector se observan descargas de aguas servidas que van directa al río. Estos resultados se asemejan a los encontrados Broocks et el. (1991), quien dice que generalmente este efecto se observa en lugares de alta precipitación, fuertes pendientes, cercanos a fuentes de agua. Los contaminantes provenientes de estas áreas son arrastradas con facilidad y rapidez hacia los cuerpos de agua.

Cuadro4.22. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 1 primera repeticiónépoca Iluviosa (04/04/12) majagua 1

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi	
рН	2	90	180	
Turbidez	2	80	160	
Color real	1	30	30	
Sólidos Totales ST	3	100	300	
Sólidos Totales Suspendidos SST	2	10	20	
Alcalinidad total	1	90	.90	
Dureza total	3	80	240	
Nitrito	1	70	70	
DBO5	4	90	360	
Coliformes Totales	4	60	240	
Total 23		16	90	
ICA		73.47		
	С	riterio		

Criterio General Aceptable

Abastecimiento publico Ligera purificación

Recreación Aceptable pero no recomendable

Pesca y vida acuática Aceptable excepto para especies sencibles

Industrial y agrícola Ligera purificación para algunos procesos

Cuadro4.23. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 1 primera repeticiónépoca Iluviosa (04/04/12) majagua 2

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	90	180
Turbidez	2	10	160
Color real	1	30	30
Sólidos Totales ST	3	60	300
Sólidos Totales Suspendidos SST	2	0	20
Alcalinidad total	1	90	90
Dureza total	3	80	240
Nitrito	1	50	70
DBO5	4	70	360
Coliformes Totales	4	60	240
Total	23 1310		10
ICA		56,95	
		ritorio	

Criterio

Criterio General
Abastecimiento publico
Recreación
Pesca y vida acuática
Industrial y agrícola

Poco contaminado

Mayor necesidad de tratamiento

Dudoso para el contacto directo

Dudoso para especies sensibles

Sin tratamiento para la industria normal

Cuadro4.24. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 1 primera repeticiónépoca Iluviosa (04/04/12) majagua 2

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	90	180
Turbidez	2	10	160
Color real	1	30	30
Sólidos Totales ST	3	60	300
Sólidos Totales Suspendidos SST	2	0	20
Alcalinidad total	1	90	90
Dureza total	3	80	240
Nitrito	1	50	70
DBO5	4	70	360
Coliformes Totales	4	60	240
Total	23	1310	
ICA		56,95	
		ritorio	

Criterio

Criterio General
Abastecimiento publico
Recreación
Pesca y vida acuática
Industrial y agrícola

Poco contaminado

Mayor necesidad de tratamiento

Dudoso para el contacto directo

Dudoso para especies sensibles

Sin tratamiento para la industria normal

Cuadro4.25. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica)
estación 1 primera repeticiónépoca Iluviosa
(04/04/12) majagua 2
Constante para aguas claras sin aparente contaminación (k=1

Parámetros	Peso (Pi)	Valoración porcent (Ci)	ual Ci * Pi
рН	2	90	180
Turbidez	2	80	160
Color real	1	30	30
Sólidos Totales ST	3	100	300
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	80	80
Dureza total	3	90	270
Nitrito	1	50	50
DBO5	4	50	200
Coliformes Totales	4	50	200
Total	23		1470
ICA		63,91	
	C	riterio	
Criter	io General		Poco contaminado
Abastecir	miento publico	Mayor necesidad de tratamiento	
Red	creación	Dudoso para el contacto directo	
Pesca y	Pesca y vida acuática		udoso para especies sensibles

4.3.2. ÉPOCA SECA

Industrial y agrícola

Desarrollando el análisis a cada uno los de resultados de cada estación con su respectiva replica en época seca y luego de haber aplicado el Índice de Calidad del Agua (ICA) se obtuvo que los resultado coinciden con los de la época lluviosa (Cuadros 4.26 a 4.29 de la primera estación y 4.34 a 4.37 de la segunda estación y el 4.42 a 4.45 de la tercera estación); por lo tanto de acuerdo al criterio general es pococontaminado; según su abastecimiento es de mayor necesidad de tratamiento, según su recreación esdudoso para el contacto directo, según su pesca y vida acuática es dudoso para especies sensibles y para su uso industrial y agrícola essin tratamiento para la industria normal.

Sin tratamiento para la Industria normal

Estos resultados determinan que el agua de la Microcuencadel río Bejuco es poco contaminada, a pesar a que es afectada por la deforestación en los alrededores del rio y por la presencia de comuneros que tienen como actividad la ganadería y agricultura, al uso de agroquímicos tanto para la agricultura como la captura de especies acuáticas por parte de los habitantes de estos sectores. Estos resultados se asemejan a los señaladas por Wagneret al., (1996), quien indica que la agricultura no es solamente el mayor consumidor de los recursos hídricos, sino que debido a las ineficiencias en su distribución y aplicación sus efluentes que retornan a los recursos de aguas superficiales o subterráneas contienen grandes cantidades de sales, minerales, productos agroquímicos que también contribuyen al deterioro de su calidad.

Cuadro4.26. Resultado del índice de calidad ambiental (ICA)

	estación 1 segund	dad ambiental (Ica) la repeticiónépoca seca 2) majagua 1	
Constant	e para aguas claras	sin aparente contaminación (k	(=1)
Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
pH	2	100	200
Turbidez	2	80	160
Color real	1	30	30
Sólidos Totales ST	3	0	0
Sólidos Totales Suspendidos SST	2	20	40
Alcalinidad total	1	100	100
Dureza total	3	80	240
Nitrito	1	60	60
DBO5	4	50	200
Coliformes Totales	4	60	240
Total	23		1270
ICA		55	,21
	C	Criterio	
Criterio	General	Р	oco contaminado
Abastecim	iento publico	Mayor n	ecesidad de tratamiento
Recr	eación	Dudoso	para el contacto directo
Pesca y v	ida acuática	Dudoso	para especies sensibles
Industria	l y agrícola	Sin tratamie	ento para la Industria normal

Cuadro4.27. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 1 segunda repeticiónépoca seca (11/09/12) majagua 2

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	90	180
Turbidez	2	30	60
Color real	1	30	30
Sólidos Totales ST	3	0	0
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	90	90
Dureza total	3	90	270
Nitrito	1	60	60
DBO5	4	70	280
Coliformes Totales	4	70	280
Total	23	12	250
ICA		54,3	4
	C	riterio	

Cuadro4.28. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 1 segunda repeticiónépoca seca (17/09/12) majagua 1

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	100	200
Turbidez	2	10	20
Color real	1	40	40
Sólidos Totales ST	3	90	270
Sólidos Totales Suspendidos SST	2	30	60
Alcalinidad total	1	100	100
Dureza total	3	80	240
Nitrito	1	60	60
DBO5	4	50	200
Coliformes Totales	4	60	240
Total	23	143	30
ICA		62,17	

Criterio

Cuadro4.29. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 1 segunda repeticiónépoca seca (17/09/12) majagua 2

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	90	180
Turbidez	2	50	100
Color real	1	30	30
Sólidos Totales ST	3	70	210
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	90	90
Dureza total	3	60	180
Nitrito	1	50	50
DBO5	4	50	200
Coliformes Totales	4	70	280
Total	23	13	320
ICA		57,39	
	Cı	iterio	

Criterio

4.3.3. ÉPOCA LLUVIOSA

Cuadro 4.30. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 2 primera repeticiónépoca Iluviosa (11/04/12) la mariposa

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	90	180
Turbidez	2	70	140
Color real	1	20	20
Sólidos Totales ST	3	60	180
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	90	90
Dureza total	3	80	240
Nitrito	1	60	60
DBO5	4	50	200
Coliformes Totales	4	60	240
Total	23	13	350
ICA		58,69	

Criterio

Criterio General Poco contaminado

Abastecimiento publico Mayor necesidad de tratamiento

Recreación Dudoso para el contacto directo

Pesca y vida acuática Dudoso para especies sensibles

Industrial y agrícola Sin tratamiento para la Industria normal

Cuadro4.31. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 2 primera repeticiónépoca Iluviosa (11/04/12) la palmita

Constante para aguas claras sin aparente contaminación (k=1)

(Ci)	Ci * Pi
90	180
70	140
30	30
	270
0	0
	20
90	270
60	60
40	160
70	280
13	50
58,69	
	58,69

Criterio

Cuadro4.32. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 2 primera repeticiónépoca Iluviosa (02/05/12) la mariposa

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	90	180
Turbidez	2	70	140
Color real	1	30	30
Sólidos Totales ST	3	60	180
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	90	90
Dureza total	3	80	240
Nitrito	1	60	60
DBO5	4	40	160
Coliformes Totales	4	60	240
Total	23	1:	320
ICA		57,39	
ICA	0.		57,39

Criterio

Cuadro4.33. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 2 primera repeticiónépoca Iluviosa (02/05/12) la palmita

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	80	180
Turbidez	2	70	140
Color real	1	30	30
Sólidos Totales ST	3	70	210
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	70	70
Dureza total	3	90	270
Nitrito	1	60	60
DBO5	4	50	200
Coliformes Totales	4	70	280
Total	23	14	20
ICA		61,73	
		Criterio	

Criterio General Poco contaminado

Abastecimiento publico Mayor necesidad de tratamiento

Recreación Dudoso para el contacto directo

Pesca y vida acuática Dudoso para especies sensibles

Industrial y agrícola Sin tratamiento para la Industria normal

4.3.4. ÉPOCA SECA

Cuadro4.34. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 2 segunda repeticiónÉPOCA SECA (12/09/12) LA MARIPOSA

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	90	180
Turbidez	2	80	160
Color real	1	20	20
Sólidos Totales ST	3	0	0
Sólidos Totales Suspendidos SST	2	70	140
Alcalinidad total	1	90	90
Dureza total	3	80	240
Nitrito	1	50	50
DBO5	4	40	160
Coliformes Totales	4	50	200
Total	23	1:	240
ICA		53,91	
	Cı	riterio	

Cuadro4.35. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 2 segunda repeticiónépoca seca (12/09/12) la palmita

Constante para aguas claras sin aparente contaminación (k=1)

2 2 1	(Ci) 90 70	180 140
2 1		140
1	22	
	30	30
3	0	0
2	0	0
1	100	100
3	90	270
1	60	60
4	40	160
4	60	240
23	11	180
	51,30	
	1 3 1 4 4	2 0 1 100 3 90 1 60 4 40 4 60

Criterio

Cuadro4.36. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 2 segunda repeticiónépoca seca (18/09/12) la mariposa

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	100	200
Turbidez	2	90	180
Color real	1	20	20
Sólidos Totales ST	3	20	60
Sólidos Totales Suspendidos SST	2	60	120
Alcalinidad total	1	80	80
Dureza total	3	90	270
Nitrito	1	60	60
DBO5	4	40	160
Coliformes Totales	4	60	240
Total	23	1390	
ICA		60,43	
	Cı	riterio	

Criterio

Cuadro 4.37. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 2 segunda repeticiónépoca seca (18/09/12) LA PALMITA

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	90	180
Turbidez	2	90	180
Color real	1	30	30
Sólidos Totales ST	3	0	0
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	100	100
Dureza total	3	90	270
Nitrito	1	60	60
DBO5	4	80	320
Coliformes Totales	4	60	240
Total	23	1380	
ICA		60,00	
	<u></u>	itorio	

4.3.5.ÉPOCA LLUVIOSA

Cuadro4.38. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 3 primera repeticiónépoca Iluviosa (18/04/12) boca de bejuco

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	90	180
Turbidez	2	70	140
Color real	1	30	30
Sólidos Totales ST	3	70	210
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	70	70
Dureza total	3	90	270
Nitrito	1	60	60
DBO5	4	40	160
Coliformes Totales	4	60	240
Total	23	1360	
ICA		59,13	
	Cı	riterio	

Cuadro4.39. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 3 primera repeticiónépoca Iluviosa (18/04/12) tigrecito

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	90	180
Turbidez	2	70	140
Color real	1	30	30
Sólidos Totales ST	3	70	210
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	50	50
Dureza total	3	80	240
Nitrito	1	50	50
DBO5	4	40	160
Coliformes Totales	4	70	280
Total	23	1340	
ICA		58,26	
	Cı	riterio	

Cuadro4.40. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 3 primera repeticiónépoca Iluviosa (09/05/12) boca de bejuco

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	90	180
Turbidez	2	70	140
Color real	1	30	30
Sólidos Totales ST	3	70	210
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	80	80
Dureza total	3	90	270
Nitrito	1	60	60
DBO5	4	40	160
Coliformes Totales	4	60	240
Total	23	1370	
ICA		59,56	
	Cı	riterio	

Criterio General Poco contaminado Abastecimiento publico Mayor necesidad de tratamiento Recreación Dudoso para el contacto directo Pesca y vida acuática Dudoso para especies sensibles Industrial y agrícola Sin tratamiento para la Industria normal

Cuadro4.41. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 3 primera repeticiónépoca Iluviosa (09/05/12) tigrecito

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	100	200
Turbidez	2	70	140
Color real	1	30	30
Sólidos Totales ST	3	70	210
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	40	40
Dureza total	3	90	270
Nitrito	1	50	50
DBO5	4	40	160
Coliformes Totales	4	70	280
Total	23	1380	
ICA		60,00	
	<u></u>	ritorio	

Criterio

Criterio General Poco contaminado

Abastecimiento publico Mayor necesidad de tratamiento

Recreación Dudoso para el contacto directo

Pesca y vida acuática Dudoso para especies sensibles

Industrial y agrícola Sin tratamiento para la Industria normal

4.3.6. ÉPOCA SECA

Cuadro4.42. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 3 segunda repeticiónépoca seca (13/09/12) boca de bejuco

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	100	200
Turbidez	2	90	180
Color real	1	30	30
Sólidos Totales ST	3	80	240
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	100	100
Dureza total	3	80	240
Nitrito	1	60	60
DBO5	4	40	160
Coliformes Totales	4	60	240
Total	23	1380	
ICA		63,04	
	٠.	itorio	

Criterio Criterio

Criterio General Poco contaminado

Abastecimiento publico Mayor necesidad de tratamiento

Recreación Dudoso para el contacto directo

Pesca y vida acuática Dudoso para especies sensibles

Industrial y agrícola Sin tratamiento para la Industria normal

Cuadro4.43. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 3 segunda repeticiónépoca seca (13/09/12) tigrecito

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	90	180
Turbidez	2	50	100
Color real	1	30	30
Sólidos Totales ST	3	20	60
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	100	100
Dureza total	3	70	210
Nitrito	1	50	50
DBO5	4	40	160
Coliformes Totales	4	70	280
Total	23	11	70
ICA		50,86	
	Cı	riterio	

Criterio General Poco contaminado Abastecimiento publico Mayor necesidad de tratamiento Recreación Dudoso para el contacto directo Pesca y vida acuática Dudoso para especies sensibles Industrial y agrícola Sin tratamiento para la Industria normal

Cuadro 4.44. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 3 segunda repeticiónépoca seca (19/09/12) boca de bejuco

Constante para aguas claras sin aparente contaminación (k=1)

Parámetros	Peso (Pi)	Valoración porcentual (Ci)	Ci * Pi
рН	2	90	180
Turbidez	2	100	200
Color real	1	30	30
Sólidos Totales ST	3	0	0
Sólidos Totales Suspendidos SST	2	0	0
Alcalinidad total	1	100	100
Dureza total	3	90	270
Nitrito	1	50	50
DBO5	4	40	160
Coliformes Totales	4	70	280
Total	23 1270		70
ICA		55,22	
	Cı	riterio	

Criterio General Poc

Abastecimiento publico Recreación

Pesca y vida acuática Industrial y agrícola Poco contaminado

Mayor necesidad de tratamiento Dudoso para el contacto directo

Dudoso para especies sensibles

Sin tratamiento para la Industria normal

Cuadro 4.45. Resultado del índice de calidad ambiental (ICA)

Índice de calidad ambiental (Ica) estación 3 segunda repeticiónépoca seca (19/09/12) tigrecito

Constante para aguas claras sin aparente contaminación (k=1)				
Parámetros	Peso (Pi)	Valoración porcentual (Ci)	l Ci*Pi	
рН	2	100	200	
Turbidez	2	70	140	
Color real	1	30	30	
Sólidos Totales ST	3	20	60	
Sólidos Totales Suspendidos SST	2	0	0	
Alcalinidad total	1	100	100	
Dureza total	3	90	270	
Nitrito	1	60	60	
DBO5	4	40	160	
Coliformes Totales	4	80	320	
Total	23 1340		1340	
ICA		58,26		
	Cı	iterio		
Criterio General		Poco contaminado		
Abastecimiento publico		Mayor necesidad de tratamiento		
Recreación		Dudoso para el contacto directo		
Pesca y vida acuática		Dudoso para especies sensibles		
Industrial y agrícola		Sin tratamiento para la Industria normal		

4.4 SOCIABILIZACIÓN DE LA INVESTIGACIÓN CON LOS RESPECTIVOS ORGANISMOS INSTITUCIONALES Y DE CONTROL.

La respectiva reunión con las autoridades del Cantón Bolívar e interesados de la Microcuenca El Bejuco, se realizó en el sitio La Mariposa, donde se hicieron presente moradores del sector y representantes de las autoridades quienes previamente fueron invitados para que sean parte de esta investigación y de esta manera dieron realce a la reunión que se efectuó el día sábado 29 de septiembre de 2012 a las 17:00 pm en la casa del señor Cruz Edilberto

Zambrano Loor, donde se expuso los resultados obtenidos en este trabajo investigativo (VER ANEXO 27)

Se realizó la escritura de un artículo científico el cual reposa en la Jefatura de Investigación Académica de la ESPAM M.F.L. y sirvió de constancia del aporte que este trabajo de investigación representa en el Cantón Bolívar. Posteriormente se ejecutó la reunión de sustentación previa a la obtención del título de tercer nivel en un evento solemne y público, donde se recapituló la tesis de grado exponiendo los resultados obtenidos del trabajo de investigación. Por ultimo todas las actividades que se realizaron en el resultado 4 sirvieron para facilitar información esencial a la ESPAM "MFL" y a las personas interesadas, de tal manera ampliar los criterios en el manejo y preservación del recurso hídrico de la Microcuenca del rio Bejuco.

CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

- La determinación de la zona de estudio, permiteevidencia que es indispensable tomar en cuenta al momento de seleccionar las estaciones de muestreos los factores que predominan en las riberas del río ya que intervienen de manera relevante en el muestreo de agua en el recurso hídrico e interfieren en los resultados al momento de los análisis en el laboratorio.
- Los análisis físicos, químicos y microbiológicos del agua del rio Bejuco, indicaron que el análisis de DBO5 en las estaciones 1, 2, 3 tanto de la época seca y lluviosa en las dos réplicas sus valores están fuera de los límites máximos permisibles, excepto en la estación uno, punto 1 (Majagua 1) de la época seca donde sus valores están dentro de lo establecido para agua de uso doméstico (TULSMA, libro VI anexo I).
- Los resultados obtenidos mediante análisis en el laboratorio coinciden tanto en época seca y lluviosa en las tres estaciones de muestreo y luego de ser interrelacionados con el índice de calidad de agua (ICA) evidencian que el agua de la Microcuenca Bejuco es poco contaminada a pesar de que el factor agrícola influye directamente en su contaminación.
- La socialización del trabajo científico a la comunidad La Mariposa y las autoridades del Cantón Bolívar, logró atraer el interésenel mejoramiento de este capital natural y la sensibilización con la calidad de agua de la Microcuenca del rio Bejuco consiguiendo que se comprometieran al cuidado de este recursohídrico.

5.2. RECOMENDACIONES

- Mejorar los resultados de este trabajo investigativo monitoreandotemporalmentelossitios de muestreos que se utilizaronenesta investigación y de esta manera fortalecer este tipo de investigación.
- Continuar con investigaciones relacionadas acalidad de agua en otros recursos hídricos del Cantón y en diferentes épocas del año, interrelacionando los resultados obtenidos en el laboratorio con la metodología índice de calidad de agua (ICA).
- Capacitar de manera continua a los habitantes que se asientan en las riveras del rio El Bejuco por medio del departamento de vinculación con la comunidad de la ESPAM "MFL" y formar en los moradores la responsabilidad de cuidar los recursos hídricos mediante la educación ambiental.

BIBLIOGRAFIA

- ADTI.(Friends of the Earth International).2003. Agua para la vida y el sustento. (En línea). Consultado 7 nov. Disponible en http://www.foei.org/esp/publications/pdfs/water_briefing_esp.pdf.
- Avilés Pino, Efren. 2002. "Historia del Ecuador", fascículos. Guayaquil: Diario El Universo.
- Avilés Pino, Efren. 2010. "Historia del Ecuador", fascículos. Guayaquil: Diario El Universo.
- Bravo, J. 1992. Métodos Normalizados para el Análisis de agua Potable y Residuales. Madrid (APHA-AWWA-WPCF)
- Brooks, KN; Gregersen, H, Thames, J 1991. Hydrology and the management of watershed. Iowa, USA. 392 p.
- Bueno, J.L.; Sastre, H.; Lavin, G.: 1997.Contaminación e Ingeniería Ambiental: Contaminación de aguas. Ed. FICYT, Oviedo.
- Calles, J. 2007. Bioindicadores terrestres y acuáticos para las Microcuenca de los ríos Illangama y Alumbre, provincia Bolívar. Ecociencia. Quito-Ecuador. 30 pp.
- DIGESA (Dirección General de Salud Ambiental).2007. Protocolo de monitoreo de la calidad sanitaria de los recursos hídricos superficiales, Dirección de Ecología y Protección del Ambiente, Área de Protección de los Recursos Hídricos, MINISTERIO DE SALUD.
- Garay, J., Panizzo, L., Lesmes, L.,ramirez, G., Sanchez, J. 1993. Manual de Técnicas Analíticas de Parámetros Físico-químicos y Contaminantes Marinos. Tercera edición. Centro de Investigaciones Oceanográficas e Hidrográficas.

- Gómez S, 2002, "Estudio de Vulnerabilidad en Sequía en la Subcuenta Aguas Calientes", Tesis Msc, Turrialba Costa Rica, 140 Pág.
- Hernández, D. 2005. Calidad de las aguas del río Sevilla, Municipio Niquero. Vol. 3, pp.66- 67.
- Horton R.K. 1965. An Index Number System for Rating Water Quality., en Jr. of WPCF, Vol. 37.
- Mara, D.; Cairncross, S.; 1990. Directrices para el uso sin riesgos de aguas residuales y excretas en agricultura y acuicultura. Ginebra: Organización Mundial de la Salud.
- Mudroch A.M. y Azcue J.M., Manual of aquaticSedimentSampling, Lewis Publishers, 1995.
- Mendoza, A. 1989. Análisis de la problemática de la calidad del agua y formulación de recomendaciones para su manejo en la cuenca alta de Río Chiriqui Viejo. Panamá. Tesis M. Sc. Turrialba, CR, CATIE. 242 p.
- Mitchell, M; Stapp, W; Bixby, K. 1991. Manual de campo de proyecto de río. Una guía para monitorear la calidad del agua en el río Bravo. Nuevo México. MX. 200 p.
- Otero Carvajal, SA.2002.Creacion y diseño de organismo de cuencas en la Sub Cuenca Rio Copan Honduras. Tesis Mag. Sc. Turrialba, CR, CATI
- Pagiola, S. 2004. Paying for Biodiversity Conservation Services in Agricultural Landscapes. Environment Department Paper No. 96. World Bank.
- Paredes, P. 2007. Calidad de las aguas. Guayaquil, EC.

- Peña, H., y Solanes, M.2003 La gobernabilidad efectiva del agua en las América.
- Roldán, G. 2003. Bioindicación de la calidad del agua en Colombia. Uso del método BMWP/Col. Editorial Universidad de Antioquia. Colombia.
- Romero, J. 1996. Contaminantes del agua. Acuaquímica. Escuela colombiana de Ingeniería. Bogotá_ Colombia.
- Rodríguez Vásquez.Eduardo, P. 2007 .problema por la contaminación del agua EPSA-Mc Graw Hill-Nueva Edición (1999). JisselUrbieta.
- Sánchez, j. 2005. Determinación de glifosato en muestras de agua en la Cuenca del Río Catatumbo. Facultad Experimental de Ciencias, La Universidad del Zulia, Maracaibo 4001-A, Venezuela. p 4.E-mail: jsanchez@ICLAM.gov.ve
- Siles, J; Soares, D. 2003. La fuerza de la Corriente: Gestión de Cuencas Hidrográficas con Equidad de Género. San José, CR. Hivos/IUCN. 266 p.
- Tincopa, J.C. 2005. Manejo integral de la calidad de agua en Colombia método bmwp/col. Editorial de Antioquia. Colombia.
- Texto Unificado de Legislación Ambiental (TULSMA, 2004), Libro VI Anexo 1, Límites permisibles para la preservación de la flora y fauna en aguas dulces, frías o cálidas, y en aguas marinas y de estuario de la Ley de gestión Ambiental, 302.
- Wagner; Shillings y Libra, 2000.Contaminacion causa y efecto. México, DF.Edicion GARNIKA. 124p.
- Wagner, 1996; Shillings y Libra, 2000. Contaminacion causas y efectos Mexico, D F. Ediciones Garnika. 424 p.

Zaixso, H. 2002. Manual de campo para el muestreo de la columna de agua.

Universidad Nacional de la Patagonia San Juan Bosco. Facultad de

Humanidad y Ciencias Sociales. Buenos Aires- Argentina.

ANEXO 1 Mapa del río bejuco

Anexo 1. Coordenadas del rio bejuco

Puntos de muestreo y monitoreo en laMicrocuenca del rio Bejuco

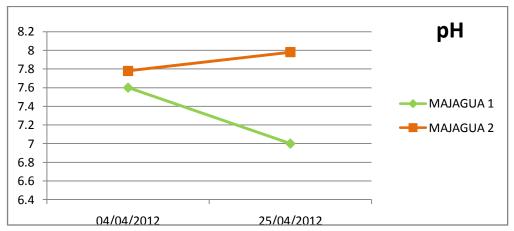
Anexo 2.1. Muestreo de las tres estaciones en la microcuenca del rio bejuco.

Anexo 2.2. Monitoreo de las tres estaciones en la época lluviosa y seca en el rio bejuco.

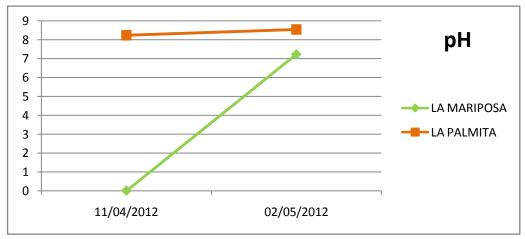
Realización de análisis físicos químicos y microbiológicos de la Microcuenca del rio bejuco en época seca y lluviosa

Anexo 3.1. Muestras de agua de las tres estaciones del rio Bejuco.

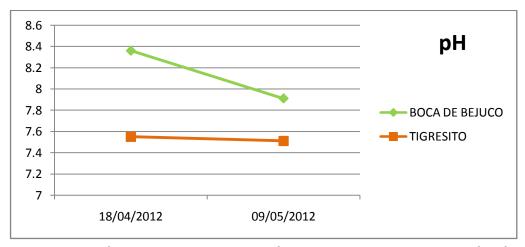
Anexo 3.2. Análisis físicos del agua del rio bejuco en la época seca y lluviosa.



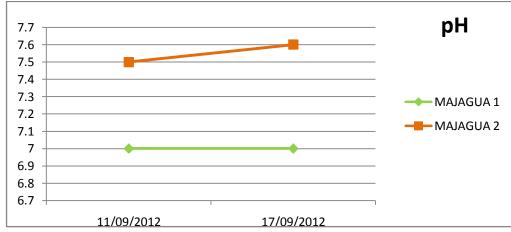
Anexo 3.3. Análisis químicos de las tres estaciones del río bejuco.



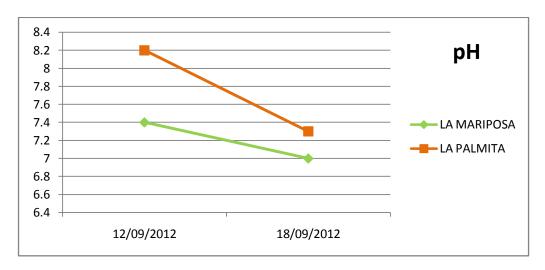
Anexo 3.4. Análisis microbiológicos de la época seca y lluviosa de las tres estaciones en el río bejuco


Gráfico del análisis de potencial hidrógeno pH de las tres estaciones de muestreo en la época lluviosa

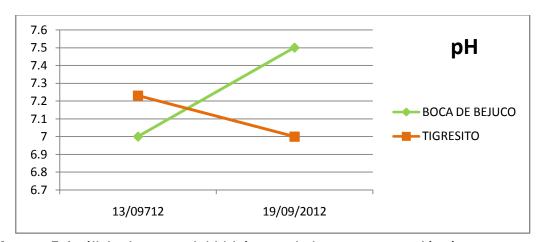
Anexo 4. Análisis de potencial hidrógeno de la primera estación época lluviosa



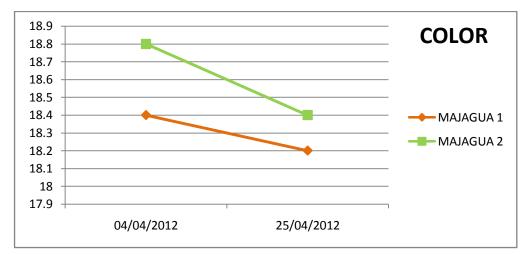
Anexo 4. Análisis de potencial hidrógeno de la segunda estación época lluviosa



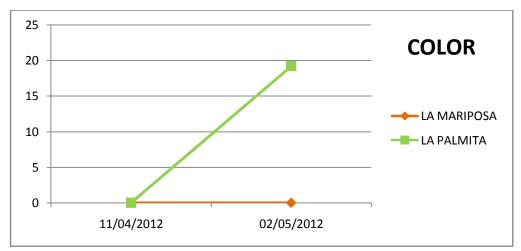
Anexo 4. Análisis de potencial hidrógeno de la tercera estación época lluviosa


Gráfico del análisis de potencial hidrógeno pH de las tres estaciones de muestreo en la época seca

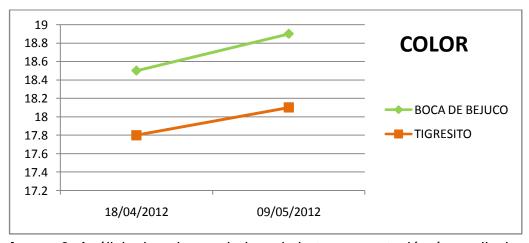
Anexo5. Análisis de potencial hidrógeno de la primera estación época seca



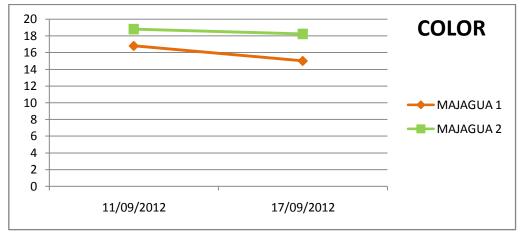
Anexo 5. Análisis de potencial hidrógeno de la segunda estación época seca



Anexo 5. Análisis de potencial hidrógeno de la tercera estación época seca

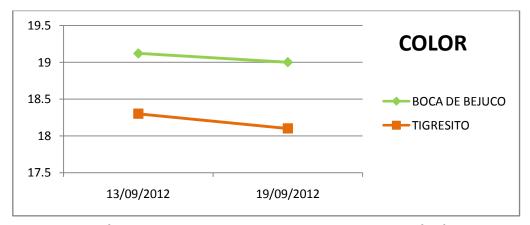

Gráfico del análisis de color verdadero de las tres estaciones de muestreo en la época lluviosa

Anexo 6. Análisis de color verdadero de la primera estación época lluviosa

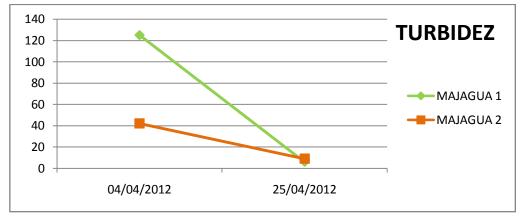


Anexo 6. Análisis de color verdadero de la segunda estación época lluviosa

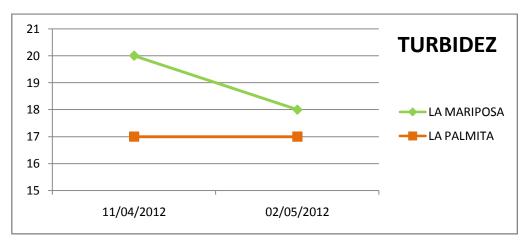
Anexo 6. Análisis de color verdadero de la tercera estación época lluviosa


Gráfico del análisis de color verdadero de las tres estaciones de muestreo en la época seca

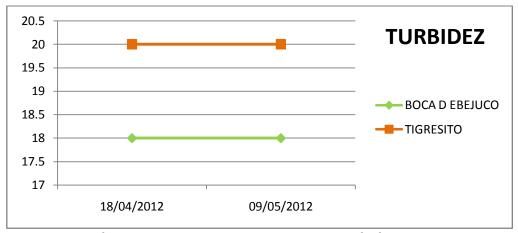
Anexo 7. Análisis de color verdadero de la primera estación época seca



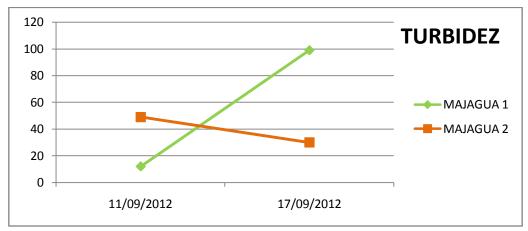
Anexo 7. Análisis de color verdadero de la segunda estación época seca



Anexo 7. Análisis de color verdadero de la tercera estación época seca

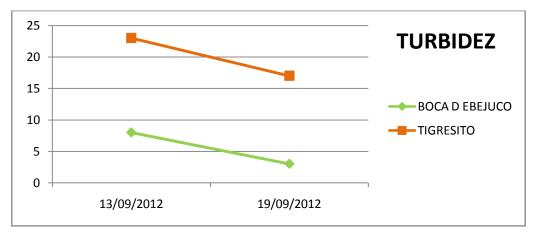

Gráfico del análisis de turbidez de las tres estaciones de muestreo en la época lluviosa

Anexo 8. Análisis de turbidez de la primera estaciónépocalluviosa



Anexo 8. Análisis de turbidez de la segunda estación épocalluviosa

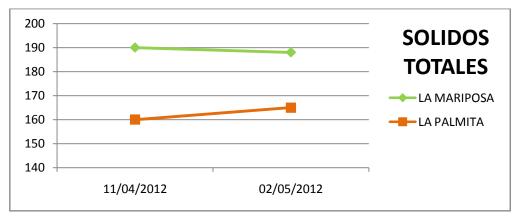
Anexo 8. Análisis de turbidez de la tercera estaciónépocalluviosa


Gráfico del análisis de turbidez de las tres estaciones de muestreo en la época seca

Anexo 9. Análisis de turbidez de la primera estación época seca



Anexo 9. Análisis de turbidez de la segunda estación época seca

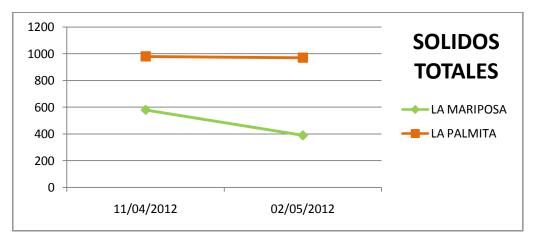


Anexo 9. Análisis de turbidez de la tercera estación época seca

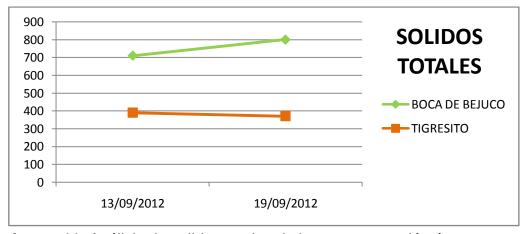
Gráfico del análisis de sólidos totales de las tres estaciones de muestreo en la época lluviosa

Anexo 10. Análisis de solidos totales de la primera estación época lluviosa.

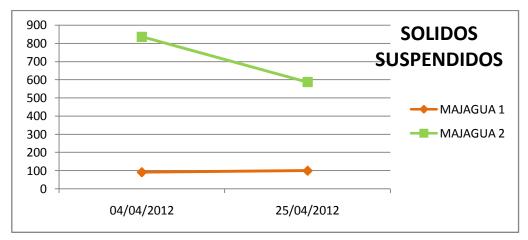
Anexo 10. Análisis de solidos totales de la segunda estación época lluviosa.



Anexo 10. Análisis de solidos totales de la tercera estación época lluviosa.

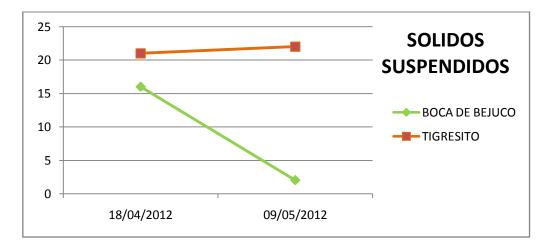

Gráfico de los análisis sólidos totales de las tres estaciones de muestreo en la época seca

Anexo 11. Análisis de solidos totales de la primera estación época seca

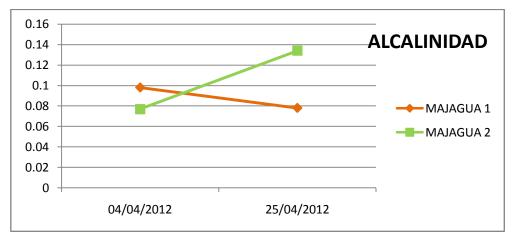


Anexo 11. Análisis de solidos totales de la segunda estación época seca

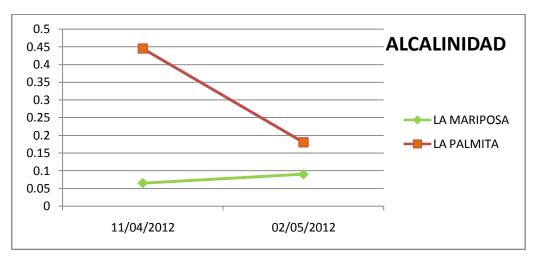
Anexo 11. Análisis de solidos totales de la tercera estación época seca


Gráfico del análisis de sólidos suspendidos de las tres estaciones de muestreo en la época lluviosa

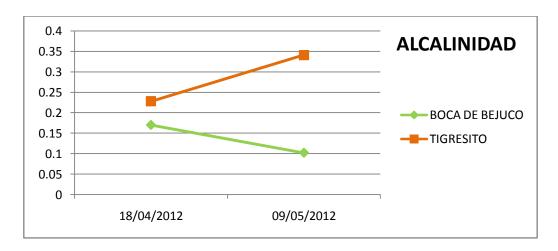
Anexo 12. Análisis de solidos suspendidos de la primera estación época lluviosa



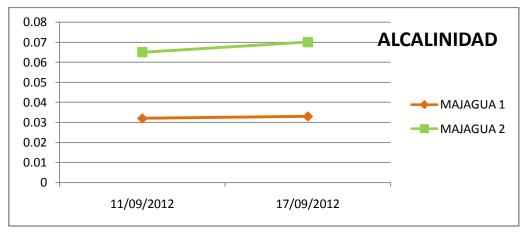
Anexo 12. Análisis de solidos suspendidos de la segunda estación época lluviosa



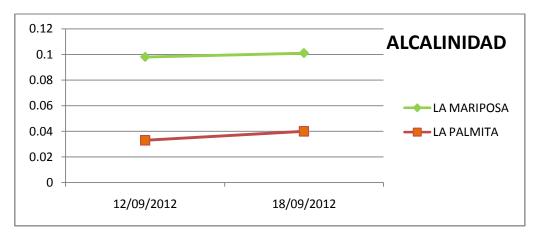
Anexo 12. Análisis de solidos suspendidos de la tercera estación época lluviosa


Gráfico del análisis de alcalinidad de las tres estaciones de muestreo en la época lluviosa

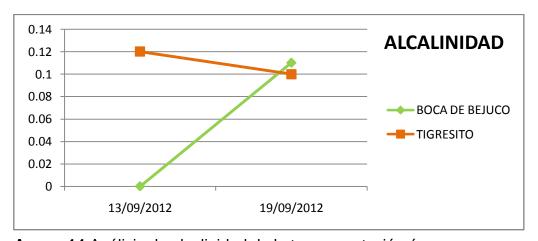
Anexo 13. Análisis de alcalinidad de la primera estación época lluviosa



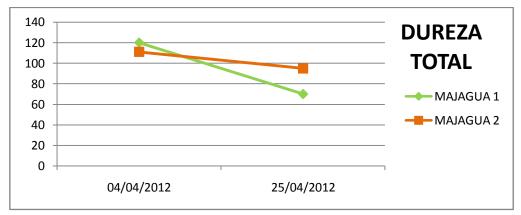
Anexo 13. Análisis de alcalinidad de la segunda estación época lluviosa



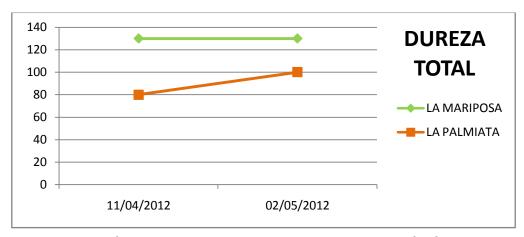
Anexo 13. Análisis de alcalinidad de la tercera estación época lluviosa


Gráfico del análisis de alcalinidad de las tres estaciones de muestreo en la época seca

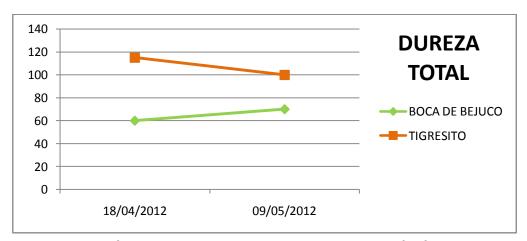
Anexo 14. Análisis de alcalinidad de la primera estación época seca



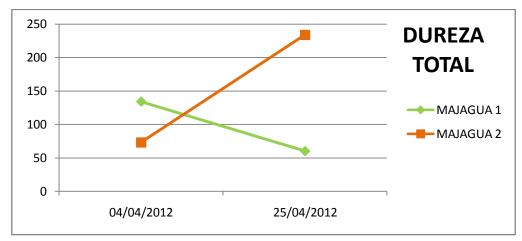
Anexo 14. Análisis de alcalinidad de la segunda estación época seca



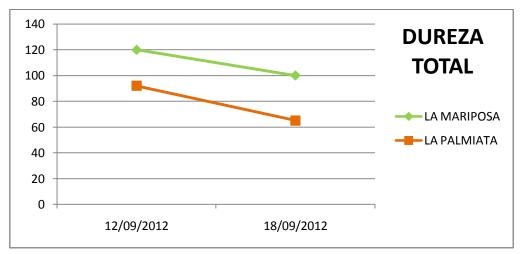
Anexo 14. Análisis de alcalinidad de la tercera estación época seca


Gráfico del análisis de dureza total de las tres estaciones de muestreo en la época lluviosa

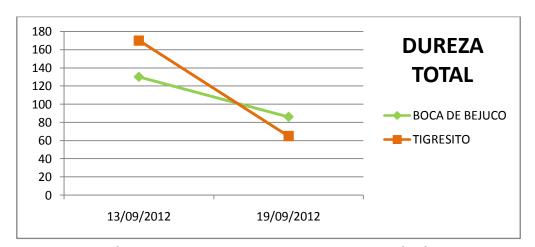
Anexo 15. Análisis de dureza total de la primera estación época lluviosa



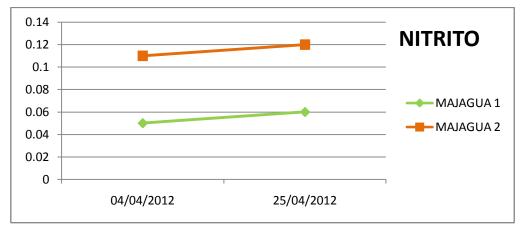
Anexo 15. Análisis de dureza total de la segunda estación época lluviosa



Anexo 15. Análisis de dureza total de la tercera estación época lluviosa

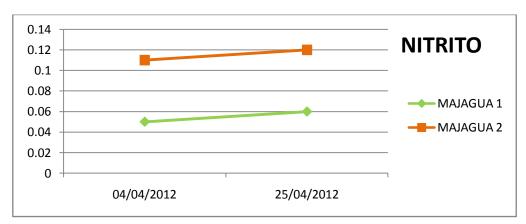

Gráfico del análisis de dureza total de las tres estaciones de muestreo en la época seca

Anexo 16. Análisis de dureza total de la primera estación época seca



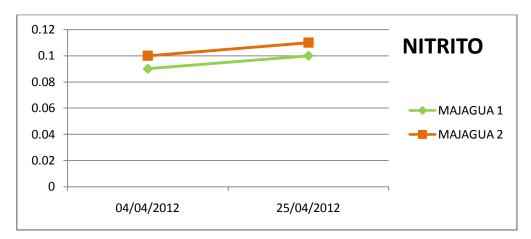
Anexo 16. Análisis de dureza total de la segunda estación época seca

Anexo 16. Análisis de dureza total de la tercera estación época seca

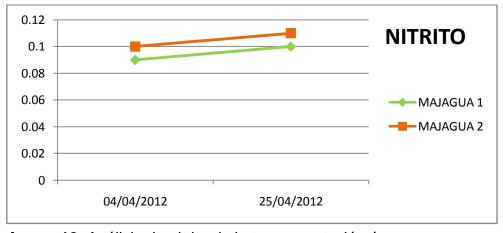

Gráfico del análisis de nitrito de las tres estaciones de muestreo en la época lluviosa

Anexo 17. Análisis de nitrito de la primera estaciónépoca lluviosa

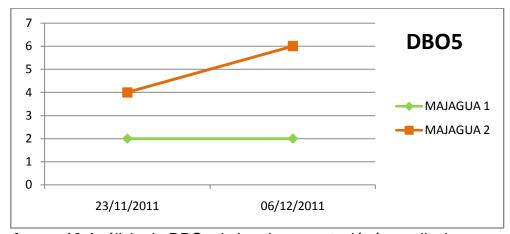
Anexo 17. Análisis de nitrito de la segunda estación época lluviosa



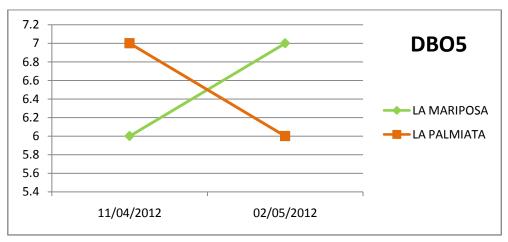
Anexo 17. Análisis de nitrito de la tercera estación época lluviosa


Gráfico del análisis de nitrito de las tres estaciones de muestreo en la época seca

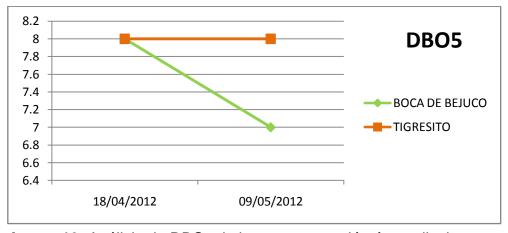
Anexo 18. Análisis de nitrito de la primera estación época seca



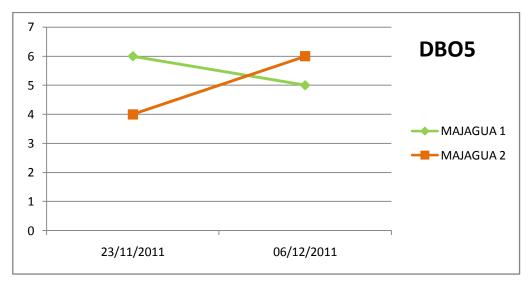
Anexo 18. Análisis de nitrito de la segunda estación época seca



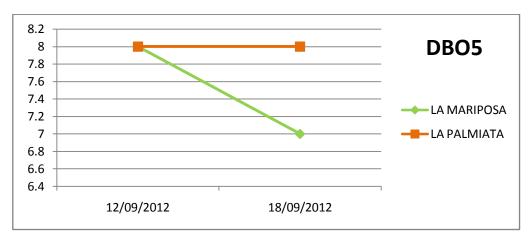
Anexo 18. Análisis de nitrito de la tercera estación época seca


Gráfico del análisis de DBO₅de las tres estaciones de muestreo en la época lluviosa

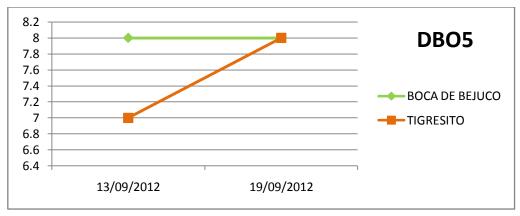
Anexo 19. Análisis de DBO5 de la primera estaciónépoca lluviosa



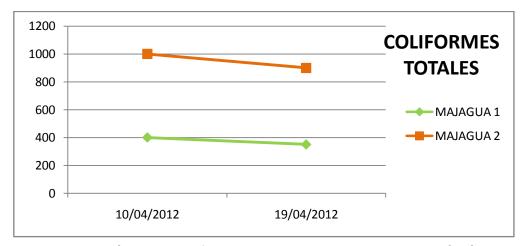
Anexo 19. Análisis de DBO5 de la segunda estación época lluviosa



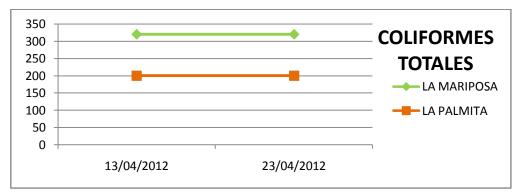
Anexo 19. Análisis de DBO5 de la tercera estación época lluviosa


Gráfico del análisis de DBO5de las tres estaciones de muestreo en la época seca

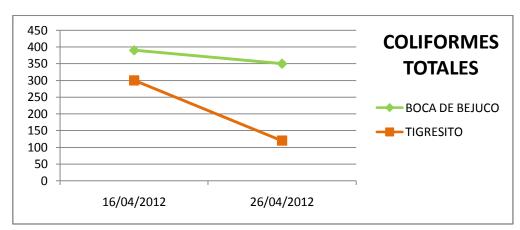
Anexo 20. Análisis de dbo5 de la primera estación época seca



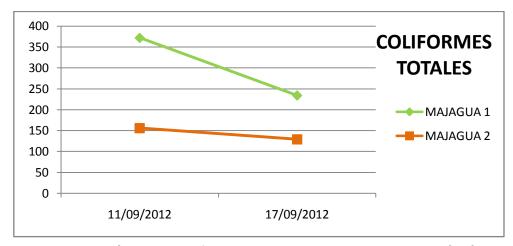
Anexo 20. Análisis de dbo5 de la segunda estación época seca



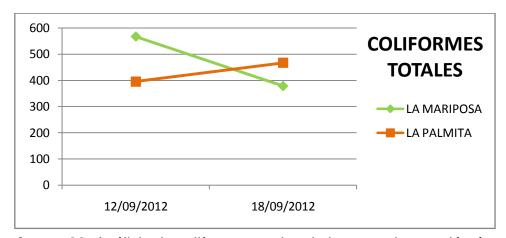
Anexo 20. Análisis de dbo5 de la tercera estación época seca


Gráfico del análisis de coliformes totales de las tres estaciones de muestreo en la época lluviosa

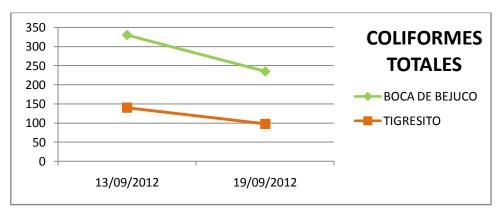
Anexo 21. Análisis de coliformes totales de la primera estación época lluviosa.



Anexo 21. Análisis de coliformes totales de la segunda estación época lluviosa



Anexo 21. Análisis de coliformes totales de la tercera estación época Lluviosa.


Gráfico del análisis de coliformes totales de las tres estaciones de muestreo en la época seca

Anexo 22. Análisis de coliformes totales de la primera estación época seca

Anexo 22. Análisis de coliformes totales de la segunda estación época seca

Anexo 22. Análisis de coliformes totales de la tercera estación época seca

Técnicas de los análisis físicos, químicos y microbiológicos

Anexo 23. Técnica de los análisis físicos, químicos y microbiológicos

Anexo 23. l'ecnica de los analisis fisi Análisis	Técnicas
рН	 Utilizar el potenciómetro, prenderlo y luego introducirlo en la muestra de agua.
Color Verdadero	Tomar cierta cantidad de la muestra de agua y filtrarla para colocar el agua filtrada en las cubetas y llevarla al NOVA 60.
Turbidez	Tomar cierta cantidad de la muestra de agua y se coloca en las cubetas para posteriormente colocar las cubetas en NOVA 60 y obtener los resultados.
Dureza total	 Agregar 5 ml de la muestra en un vaso de precipitación Agregar de 3 – 5 gotas de buffer de dureza total Agregar una pisca de NET Titular con EDTA
Sólidos suspendidos	 Encender la estufa a 150 c e introducir el papel filtro durante 30 minutos Llevarlo al desecador por 15 minutos y posteriormente pesarlo Una probeta de 100 ml coger su equivalente de muestra Armar el sistema con los accesorios de la bomba de vacío, colocando en su interior el papel filtro previamente pesado Vaciar el agua, una vez filtrada la muestra sacar el papel filtro y llevarlo a la estufa a 150 c por 30 minutos Luego sacarlo y colocarlo en el desecador por 15 minutos Pesarlo y realizar los resultados
Alcalinidad	 Colocar 5 ml de la muestra en un vaso de precipitación Agregar 3 gotas de fenolftaleína Titular con anaranjado de metilo
DBO₅	 Tomar 365 de la muestra de agua en las probetas Colocar los 365 ml de agua en las botellas destinadas para la realización de este análisis. Introducir en cada botella la bala magnética Tapar con los cauchos al mismo que se le colocara las pastillas kendalt Colocar los cabezales a cada botella y llevarlas a la cámara de DBO5 por 5 días.
Coliformes Totales	 Preparación del material. Realizar pases con alícuotas de 1 ml de cada 5 tubos por dilución a tubos con medio EC y campanas Durham. Dejar incubando de 24 a 48 horas a 35

	grados centígrados. Realizar diluciones hasta 10-4. Sembrar de cada dilución por quintuplicado. Transferir hacia tubos con caldo EC. Análisis de resultados números más probable (NMP
Nitritos	 Pipetear 5 ml de la muestra en un tubo de ensayo. Añadir 1 microcucharada de NO₂-AN. Agitar intensamente para disolver la sustancia sólida. Comprobar el valor del pH de la muestra, intervalo previsto: Ph 2,0-2,5. En caso necesario corregir el valor del pH añadiendo gota a gota solución diluida de hidróxido sódico o reemplazar con ácido sulfúrico. Tiempo de reacción: 2 minutos. Añadir la solución a la cubeta correspondiente. Seleccionar el método con el autoselector. Colocar la cubeta en el compartimiento para cubeta

Escala de clasificación del índice de calidad de agua en función del uso

Anexo 25. Escala de clasificación del índice de calidad de agua en función del uso

ICA	Criterio General	Abastecimiento Publico	Recreación Pesca y Vida Acuática		Industrial y Agrícola	
10		No Requiere			No Requiere Purificación	
95	No Contaminado	Purificación				
90			Aceptable Para	Aceptable Para Todos Los		
85		Ligera Purificación	Cualquier Deporte Acuático	Organismos	Ligera Purificación	
80	Acceptable				Para	
75	Aceptable				Algunos Procesos	
70		Mayor Noncided De		Acceptable Free wto Dove	Sin Tratamiento Para La Industria	
65	Poco	Mayor Necesidad De Tratamiento	Aceptable Pero No Recomendable	Aceptable Excepto Para Especies Sensibles		
55	Contaminado			Dudoso Para Especies		
50				Sensibles	Normal	
45			Dudoso Para El		Tratamiento En La Mayor	
40	Contaminado	Contaminado Dudoso		Solo Organismos		
35			Sin Contacto Con El	Resistentes	Parte De La	
30			Agua		Industria	
25			Señal De		Uso	
20	☐ Altamente ☐	No Aceptable	Contaminación		Refringido	
15		140 Acceptable		No Aceptable		
10			No Aceptable		No	
5	5				Aceptable	
0						

ANEXO 26 Matriz de factor de normalización ci

Anexo 26. Matriz del factor de normalización ci

	Peso relativo	Factor o	Factor de Normalización (Ci)									
	(pi)	100	90	80	70	60	50	40	30	20	10	0
Parámetro		Valores Analíticos a										
рН		7	7-8	7-8,5	7-9	6,5	6-9,5	5 – 10	4 – 11	3 – 12	2 - 13	1-14
Temperatura		<20	<25	<30	<35	<40	<45	<50	<55	<60	<65	>70
Turbidez		<5	<10	<15	<20	<25	<30	<40	<60	<80	£100	>100
Color real		<0,5	<2	<4	<6	<8	<10	<15	<20	<50	£100	>100
Sólidos Totales ST		<100	>100	<150	<180	<200	<250	<300	<350	<400	<450	>450
Sólidos Totales												
Suspendidos SST		<5	<10	<15	<20	<25	<30	<40	<60	<80	£100	>100
Cloruro		<25	<50	<100	<150	<200	<300	<500	<700	<1000	£1500	>1500
Alcalinidad total		<50	<100	<150	<200	<250	<300	<350	<400	<450	<500	>500
Dureza total		<50	<100	<150	<200	<250	<300	<350	<400	<450	<500	>500
Nitrito		<0,005	<0,01	<0,03	<0,05	<0,10	<0,15	<0,20	<0,25	<0,50	£1,00	>1,00
DBO ₅		<0,5	<2	<3	<4	<5	<6	<8	<10	<12	£15	>15
Coliformes Totales		<20	<50	<100	<300	<500	<1000	<1500	<2000	<2500	£3000	>3000

ANEXO 27 Acta y asistencia de la reunión con interesados

ACTA DE REUNIÓN

En el Cantón Bolívar el día sábado 29 de septiembre del presente año, a las 17:00 se realizo la reunión con los habitantes del sitio La Mariposa y autoridades del Cantón Bolívar en la casa del señor Cruz Edilberto Zambrano Loor; donde se expuso los resultados obtenidos en este trabajo investigativo con el tema "EVALUACIÓN DE LA CALIDAD DE AGUA DE LA MICROCUENCA DEL RÍO BEJUCO MEDIANTE LA APLICACIÓN DE INDICADORES FÍSICO-QUÍMICOS Y MICROBIOLÓGICOS" dicha exposición estuvo a cargo dela Tiga. Angélica María Reina Mora egresada de la Carrera de Medio Ambiente de la ESPAM "MFL"

Tiga. ANGELLICA REINA

Tiga. ANGELLICA REINA 1312767104

ASISTENSIA

NOMBRE

FIRMA

Eugenia Mara Zambruno ARACEL Zambrano Mendoza JACINTO Cedeño BRAVO Elidotio Marile @ Nopa Luz Vasquez Hontero Ilia faramillo Bernweez Melchor Eligio Bravo Bravo Maria Intonia Melda Heza Winberto Menia Pico B Losa Haria Burgas Cume. Maria Emifia Campir Laar. Diogene Alejandeo Ponarrica Maria de los ANGELES Quijige Delia de la Cruz Sabando Holanda Patricia Castello Silvino Apredo Reina Reina ANA CECIBEL COOR COOR. Victor Rajacel Bravo Tema Patricio futorio Gandoro 3.

Month of Manual Policy States August States August States States

Intonia del Cosario Cederio Vaca Bethida Dearaldita ? Berthida Bernaldita Zambrows Betty Nacianila Centena Sligh Macitza Santana EliGIA MARITZA SANTANAS Famon Eloy olgin Candro 20 HEBER PATEICIO MACIAS Maria Ramona Cusme Mejia Morcedes Kalvine Mora Mercedes Katerine Mora EVAN PATERIOLO CONZATES IVAN PATRICIO GONZATOS Asaraula yarmana 35 Mangrela yarmina Beavo Sonia familety Castro Cedeno Jarya Pamoleth Casteo Angela Noemi Zamboand Angela Noemi Zambeano Remberto Fabian Lucas Remonto Fabiolio Lucas Log Capilina Horgvillo Rosa Sapolina Ronguello Maria Alejandrina Olgin Marion Herandingar olgin Monsita Adrikua loon Monsita Adriana Loor L Nurva Estrettife Briones Nueva Estrellita Beiones Souts The Jose Moreina Palma José Jose Moreira Palma mainto Hamel Berndto Juanito Manuel Bernello Dole Barala Zampbeano Doci Carcia Zambrano Hoy Very Jambano Eloy Vera Zambrano Dia Monstrale campos. Maria Monsevrate Campos Andrew Jels Maxeillo Anderson Velez Marcillo