

ESCUELA SUPERIOR POLITÉCNICA AGROPECUARIA DE MANABÍ MANUEL FÉLIX LÓPEZ

CARRERA DE INGENIERÍA AMBIENTAL

INFORME DE TRABAJO DE INTEGRACIÓN CURRICULAR PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO AMBIENTAL

MECANISMO: PROYECTO DE INVESTIGACIÓN

TEMA:

EVALUACIÓN DE PASIVOS AMBIENTALES PUNTUALES SOBRE EL RECURSO AGUA OCASIONADOS POR EXTRACTORAS DE ACEITE EN EL RÍO CUCARACHA, CANTÓN LA CONCORDIA

AUTORES:

CEVALLOS MACÍAS ANTHONY ARIEL PILOSO GARCÍA ARIEL ALEXANDER

TUTOR:

ING. JOSE MANUEL CALDERÓN PINCAY, M. Sc.

CALCETA, MARZO DE 2022

DECLARACIÓN DE AUTORÍA

Anthony Ariel Cevallos Macías, con cédula de ciudadanía 1315566651, y Ariel Alexander Piloso García, con cédula de ciudadanía 0803279017, declaramos bajo juramento que el Trabajo de Integración Curricular titulado: **Evaluación de pasivos ambientales puntuales sobre el recurso agua ocasionados por extractoras de aceite en el río Cucaracha, cantón La Concordia** es de nuestra autoría, que no ha sido previamente presentado para ningún grado o calificación profesional, y que hemos consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración, concedemos a favor de la Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos, conservando a nuestro favor todos los derechos patrimoniales de los autores sobre la obra, en conformidad con el Artículo 114 del Código Orgánico de la Economía Social de los Conocimientos, Creatividad e Innovación.

ANTHONY A. CEVALLOS MACÍAS

CC: 1315566651

ARIEL A. PILOSO GARCÍA

CC: 0803279017

AUTORIZACIÓN DE PUBLICACIÓN

Anthony Ariel Cevallos Macías, con cédula de ciudadanía 1315566651, y Ariel Alexander Piloso García, con cédula de ciudadanía 0803279017, autorizamos a la Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, la publicación en la biblioteca de la institución del Trabajo de Integración Curricular titulado: Evaluación de pasivos ambientales puntuales sobre el recurso agua ocasionados por extractoras de aceite en el río Cucaracha, cantón La Concordia, cuyo contenido, ideas y criterios son de nuestra exclusiva responsabilidad y total autoría.

ANTHONY A. CEVALLOS MACÍAS

CC: 1315566651

ARIEL A. PILOSO GARCÍA

CC: 0803279017

iv

CERTIFICACIÓN DEL TUTOR

Ing. José Manuel Calderón Pincay, certifica haber tutelado el Trabajo de Integración

Curricular titulado: Evaluación de pasivos ambientales puntuales sobre el recurso

agua ocasionados por extractoras de aceite en el río Cucaracha, cantón La Concordia,

previo a la obtención del título de Ingeniero Ambiental, de acuerdo al REGLAMENTO

DE LA UNIDAD DE INTEGRACIÓN CURRICULAR DE CARRERAS DE GRADO de

la Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López.

ING. JOSÉ MANUEL CALDERÓN PINCAY, M. Sc.

CC: 2300121833

TUTOR

ν

APROBACIÓN DEL TRIBUNAL

Los suscritos integrantes del Tribunal correspondiente, declaramos que hemos APROBADO el Trabajo de Integración Curricular titulado: Evaluación de pasivos ambientales puntuales sobre el recurso agua ocasionados por extractoras de aceite en el río Cucaracha, cantón La Concordia, que ha sido desarrollado por Cevallos Macías Anthony y Piloso García Ariel, previo a la obtención del título de Ingeniero Ambiental, de acuerdo al REGLAMENTO DE LA UNIDAD DE INTEGRACIÓN CURRICULAR DE CARRERAS DE GRADO de la Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López.

ING. FABRICIO ALCIVAR INTRIAGO, M. Sc.

CC: 1308632262

PRESIDENTE DEL TRIBUNAL

ING. PATRICIO NOLES AGUILAR, M. Sc.

CC: 0912416351

MIEMBRO DEL TRIBUNAL

ING. SERGIO ALCIVAR PINARGOTE, M. Sc

CC: 1308973799

MIEMBRO DEL TRIBUNAL

AGRADECIMIENTO

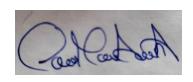
Agradecemos a Dios, por llenarnos de sabiduría, fortaleza y fuerza para culminar con éxito esta etapa estudiantil y permitirnos cumplir estos sueños.

A nuestros padres, por su amor incondicional, por apoyarnos en cada una de nuestras decisiones, por ser nuestra fuente de inspiración, guía y aliento para salir adelante.

Al Ing. José Manuel Calderón por su paciencia, compromiso y el haber compartir sus conocimientos con nosotros.

A la Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López que nos dio la oportunidad de una educación superior de calidad y en la cual hemos forjado nuestros conocimientos profesionales día a día.

LOS AUTORES


DEDICATORIA

A la Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, por brindarnos la oportunidad de poder crecer personal y profesionalmente a través de una educación superior de calidad.

A mis padres, Ramón Cevallos y Rocío Macias por su compromiso conmigo durante todo este proceso de formación académica, a mi hermana Josselin Cevallos que de una u otra forma siempre estaba presta para darme una mano amiga para cualquier situación que se me presentaba y sobre todo a mis abuelos, Estilita Aray y Francisco Macias a quienes atribuyo totalmente este logro ya que son la base de mi educación y bienestar porque siempre han estado pendiente de mí.

A mi gran amigo y compañero Ariel Piloso, con quien desde el inicio emprendimos juntos este largo y duro camino de formarnos profesionalmente; sin embargo, siempre nos apoyamos mutuamente para superar cualquier obstáculo que se nos presentaba.

A nuestro tutor, Ingeniero José Manuel Calderón Pincay por su compromiso y dedicación en impartir sus conocimientos para la realización de este trabajo de titulación, ya que todo el tiempo estaba presto a dar sus respectivas observaciones:

ANTHONY A. CEVALLOS MACÍAS

DEDICATORIA

A Dios quien ha sido mi guía, fortaleza y su mano de fidelidad y amor han estado conmigo hasta el día de hoy.

A mi madre García G. Carmen Elizabeth que con la sabiduría de Dios me has enseñado a ser quien soy hoy. Gracias por tu paciencia, por enseñarme el camino de la vida, gracias por tus consejos, por el amor que me has dado y por tu apoyo incondicional en mi vida. Gracias por llevarme en tus oraciones porque estoy seguro que siempre lo haces, al esposo de mi mamá Brayan A. Rodríguez Restrepo, por ser un ejemplo a seguir, a mi esposa Lisbeth K. Nevárez Zambrano, convirtiéndose en pilares fundamentales para mi formación profesional.

A mi abuela, Maritza M. García García, que estuvo siempre a mi lado brindándome su mano amiga dándome a cada instante una palabra de aliento.

A mi gran amigo y compañero Anthony Cevallos, con quien desde el inicio emprendimos juntos este largo y duro camino de formarnos profesionalmente; sin embargo, siempre nos apoyamos mutuamente para superar cualquier obstáculo que se nos presentaba.

A nuestro tutor, Ingeniero José M. Calderón Pincay por su compromiso y dedicación en impartir sus conocimientos para la realización de este trabajo de titulación, ya que todo el tiempo estaba presto a dar sus respectivas observaciones

Orie P)

ARIEL A. PILOSO GARCÍA

CONTENIDO GENERAL

DECLA	RACIÓN DE AUTORÍA	ii
AUTOF	RIZACIÓN DE PUBLICACIÓN	. iii
CERTII	FICACIÓN DEL TUTOR	. iv
APROE	BACIÓN DEL TRIBUNAL	V
AGRAI	DECIMIENTO	. vi
DEDIC	ATORIA	vii
DEDIC	ATORIA	viii
CONTE	ENIDO GENERAL	. ix
CONTE	ENIDO DE TABLAS	xii
CONTE	ENIDO DE FIGURAS	xii
RESUN	MEN	xiii
PALAB	RAS CLAVES	xiii
ABSTR	RACT	xiv
KEY W	ORDS	xiv
1. CA	PÍTULO I. ANTECEDENTES	. 1
1.1.	PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA	. 1
1.2.	JUSTIFICACIÓN	. 2
1.3.	OBJETIVOS	. 4
1.3.1.	OBJETIVO GENERAL	. 4
1.3.2.	OBJETIVOS ESPECÍFICOS	. 4
1.4.	IDEA A DEFENDER	. 4
2. CA	PÍTULO II. MARCO TEÓRICO	. 5
2.1.	ACTIVIDAD INSDUTRIAL	. 5
2.2.	ACTIVIDAD PALMICULTORA	. 5
2.3.	CORRIENTES RESIDUALES POR PALMICULTURA	. 8
2.4.	ASPECTOS E IMPACTOS AMBIENTALES	. 8

9			≣S	MBIENTA	PASIVOS	2.5.
9		FLUJO.	ΓALES)S AMBIE	PASIV	2.5.1.
9	OS	CUMULAD	TALES)S AMBIE	PASIV	2.5.2.
10	3	JNTUALE	ΓALES)S AMBIE	PASIV	2.5.3.
10) HÍDRICO	CUERP	ΓALES)S AMBIE	PASIV	2.5.4.
10	_ES	MBIENTA	SIVOS	CIÓN DE F	IDENTIFIA	2.6.
11			RTANC	Z DE IMPO	MATR	2.6.1.
14			GACIÓ	AS DE MI	MEDIE	2.6.2.
ACTIVIDADES						
14			IALES	SUPERF	AGUA	2.7.1.
15			OR	O RECEF	CUER	2.7.2.
15			STRIAL	SAS IND	EMPR	2.7.3.
ESERVACIÓN DE 15						2.8. LA V
15			UÍMIC	SIS FISICO	ANÁLI	2.8.1.
21	ARACHA	. RÍO CUO	GUA D	LIDAD DE	ÍNDICE CA	2.9.
24	O	DOLÓGIO	O ME	DESARRO	APÍTULO III.	3. CA
24				١	UBICACIÓ	3.1.
24			JO	DE TRA	DURACIÓ	3.2.
24			010	S EN EST	VARIABLE	3.3.
24			NDIEN	BLE INDE	VARIA	3.3.1.
25			DIENTI	3LE DEPE	VARIA	3.3.2.
25					TÉCNICAS	3.4.
25				VACIÓN.	OBSE	3.4.1.
25			ACIÓN	REFEREN	GEOR	3.4.2.
25			RE	≣ SOFTW	USO E	3.4.3.
25				REO	MUES	3.4.4.

3.5. PROCEDIMIENTOS
3.5.1. FASE I. ESTABLECER LOS ASPECTOS E IMPACTOSNEGATIVOS ASOCIADOS A PASIVOS AMBIENTALES GENERADOS POR EXTRACTORAS DE ACEITE EN EL RÍO CUCARCAHA, CANTÓN LA CONCORDIA
3.5.2. FASE II. VALORAR LOS PASIVOS AMBIENTALES PUNTUALES GENERADOS EN EL RÍO CUCARACHA, CANTÓN LA CONCORDIA
3.5.3. FASE III. PROPONER MEDIDAS DE MITIGACIÓN DE LOS PASIVOS AMBIENTALES SIGNIFICATIVOS
4. CAPÍTULO IV. RESULTADOS Y DISCUSIÓN
4.1. ESTABLECIMENTO DE LOS ASPECTOS E IMPACTOS NEGATIVOS ASOCIADOS A PASIVOS AMBIENTALES GENERADOS POR ACTIVIDADES de extracción de ACEITE EN EL RÍO CUCARACHA CANTÓN LA CONCORDIA 33 4.2. VALORACIÓN DE LOS PASIVOS AMBIENTALES PUNTUALES
GENERADOS EN EL RÍO CUCARACHA CANTÓN LA CONCORDIA
4.3. PROPUESTA DE MEDIDAS DE MITIGACIÓN DE LOS PASIVOS AMBIENTALES SIGNIFICATIVOS
5. CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES
5.1. CONCLUSIONES
5.2. RECOMENDACIONES
BIBLIOGRAFÍA50
ANEXOS 56

CONTENIDO DE TABLAS

Tabla 3.1. Modelo de ficha de registro de pasivo ambiental	27
Tabla 3.2. Codificación de las muestras recolectadas	29
Tabla 3.3. Guía de valoración de pasivos ambientales	30
Tabla 3.4. Normativa ambiental ecuatoriana	
Tabla 3.5. Modelo de la propuesta de mitigación de pasivos ambientales	
Tabla 4.1. Pasivos Ambientales Identificados	
Tabla 4.2. Valor de Importancia de los pasivos ambientales identificados.	
Tabla 4.3. Resultados de análisis de laboratorio	
Tabla 4.4. Censo INEC al monocultivo de Palma aceitera	
Tabla 4.5. Medidas de mitigación al pasivo ambiental Unipal S.A	
Tabla 4.6. Medidas de mitigación, pasivo ambiental Teobroma	
Tabla 4.7 pasivo ambiental Molsando S.A	4/
CONTENIDO DE FIGURAS	
Figura 2.1. Diagrama de flujo	7
Figura 2.2. Parámetros ICA del Río Cucaracha	22
Figura 3.1. Mapa de ubicación	24
Figura 4.1. Mapa de ubicación de los pasivos ambientales	33
Figura 4.2. Resultados del parámetro pH	39
Figura 4.3. Resultados de Conductividad Eléctrica	40
Figura 4.4. Resultados de Temperatura	41
Figura 4.5. Resultados De Sólidos Suspendidos Totales	41
Figura 4.6. Resultados de Sólidos Disueltos Totales	42
Figura 4.7. Resultados de Turbidez	43
Figura 4.8. Resultados de Aceites y Grasas	43
Figura 4.9. Resultados de Demanda Bioquímica de Oxígeno	
Figura 4.10. Resultados de Demanda Química de Oxígeno	
<u>-</u>	

RESUMEN

La presente investigación tuvo como objeto de estudio la evaluación de los pasivos ambientales en el río Cucaracha del cantón La Concordia, ocasionado por actividades de extracción de aceite de palma africana, durante los meses de octubre 2021 hasta enero 2022, por lo cual se realizó un recorrido de observación sobre el río aplicándose una ficha para la identificación de los pasivos ambientales, se tomaron 2 muestras por pasivo, 100 metros (aguas arriba) antes de la descarga residual de las extractoras de aceites hacia el cauce y la segunda a 100 metros (aguas abajo) después de la descarga residual en el cuerpo hídrico: consecuentemente se realizó un análisis fisicoquímico a las muestras tomadas por pasivo, en el que se evaluaron pH, Conductividad Eléctrica, Temperatura, Sólidos Suspendidos Totales, Sólidos Disueltos Totales, Turbidez, Aceites y Grasas, Demanda Bioquímica de Oxígeno y Demanda Química de Oxígeno. Se identificaron 3 pasivos ambientales correspondiente a Unipal S.A. con un valor de importancia de 44 IM, Teobroma 40 IM y Molsando S.A. 48 IM; asociados al mismo aspecto ambiental que es filtración de vertidos aceitosos provenientes de las extractoras, su posterior valoración arrojo que los pasivos se encuentran en un rango moderado no crítico, así mismo los resultados fisicoquímicos no exceden los límites máximos permisibles en ninguna de las muestras por pasivo. Se propusieron medidas de mitigación en base a los pasivos ambientales identificados estableciéndose estrategias con enfoque biológico para tratar la filtración de vertidos aceitosos, que tienen alto porcentaje de eficiencia y bajo costo.

PALABRAS CLAVE

Contaminación de agua, Extractoras de aceite, Pasivo ambiental, río Cucaracha.

ABSTRACT

The objective of this research was to assess the environmental liabilities in the Cucaracha River, caused by African palm oil extraction activities, for which an observation tour was carried out over the river, applying a form for the identification of environmental liabilities. For the valuation of the liabilities, a physicochemical analysis of the water was taken into account in which the parameters pH, Electrical Conductivity, Temperature, Total Suspended Solids, Total Dissolved Solids, Turbidity, Oils and Fats, Biochemical Oxygen Demand and Chemical Demand were evaluated. of Oxygen; Therefore, 2 samples were taken per passive, 100 meters (upstream) before the residual discharge from the oil extractors to the riverbed and the second at 100 meters (downstream) after the residual discharge in the water body. 3 environmental liabilities were identified corresponding to Unipal S.A., Teobroma and Molsando S.A. Associated with the same environmental aspect due to the filtration of oily spills from the extractors, its subsequent evaluation showed that the liabilities are in a moderate non-critical range, likewise the physicochemical results do not exceed the maximum permissible limits. Mitigation measures were proposed based on the identified environmental liabilities, establishing a strategy with a biological approach, which have a high percentage of efficiency and low cost.

KEY WORDS

Water pollution, Oil extractors, Environmental liabilities, Cucaracha river.

CAPÍTULO I. ANTECEDENTES

1.1. PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA

El agua, además de ser un recurso imprescindible para la supervivencia del ser humano, es ampliamente utilizada en actividades diarias, como la agricultura (de 70% a 80%), la industria (20%), el uso doméstico (6%), entre otras, convirtiéndose en uno de los recursos más apreciados en el planeta (Pantoja y Villanueva, 2012). Uno de los grandes problemas ambientales del mundo actual es la contaminación de las corrientes hídricas, la cual se produce no sólo por causas naturales, sino también por actividades antropogénicas (Bigorda, 2017) citado por Arteaga (2019).

En la provincia de Santo Domingo de los Tsáchilas la contaminación de los ríos, es un problema que se viene arrastrando desde hace aproximadamente 30 años, se debe principalmente a las descargas directas de aguas residuales sin tratamiento, provenientes de agroindustrias, previo a la descarga a los cuerpos hídricos naturales (Ministerio del Ambiente de Ecuador [MAE], 2016).

Según el MAE (2015) en coordinación con la Secretaría Nacional de Gestión de Riesgos [SNGR] y la Secretaría Nacional del Agua [Senagua], manifiestan que no se debe utilizar el agua del río Cucaracha que nace desde la provincia de Santo Domingo de los Tsáchilas y sigue su cauce hasta desembocar en el cantón La Concordia, por la presencia de contaminantes que le confieren al agua olor, así como una película aceitosa (aparentemente aceite de palma africana) o espuma blanca en la superficie, lo que conlleva el aumento de mortalidad de peces y aves, generando riesgos ambientales principalmente en la salud de la población humana que realiza actividades recreativas turistas en el centro balneario La Cuerdita.

Chiquín y Troya (2013) afirman que la calidad del agua del río Cucaracha corre serio peligro, debido a la contaminación que avanza a pasos alarmantes por la presencia de industrias palmicultoras asentadas en la ribera, que en la mayoría de los casos descargan sus aguas directamente al cuerpo hídrico muchas veces sin ser tratadas; estos mismos autores mencionan que a lo largo del cauce, existen pasivos ambientales por presencia de extractoras de aceite, consideradas como punto focales de contaminación del Río Cucaracha.

Según Camacho (2016), la Concordia fue el primer punto de progreso palmero en el Ecuador gracias a su único clima que hace adecuado el cultivo. En la actualidad estos cultivos y actividades semejantes como la extracción de aceite de palma están incidiendo negativamente al Río Cucaracha con sus residuos y efluentes industriales; dentro del área que comprende el cauce del rio se encuentran tres empresas dedicadas a la extracción de aceite de palma que están próximas a la ribera (Chiquín y Troya, 2013).

No obstante, en un estudio realizado por Chiquín y Troya (2013) evidenció que la concentración de Sólidos Totales Disueltos (TDS), Nitritos, Nitratos, Demanda Química de Oxígeno (DQO), Alcalinidad y Coliformes Fecales exceden la normativa vigente ambiental del Ecuador, estos resultados de los parámetros físico-químicos y microbiológicos del agua y las diferentes posiciones geográficas monitoreadas, demostraron la influencia de las actividades agroindustriales en la alteración de la calidad del agua.

En base a los antecedentes expuestos, se plantea la siguiente pregunta de investigación: ¿Todas las descargas de las empresas extractoras de aceite generaran pasivos ambientales en el Río Cucaracha?

1.2. JUSTIFICACIÓN

Cabrera *et al.*, (2018) analizan la importancia que tiene un pasivo ambiental para todos los ciudadanos de los pueblos del mundo, así también, como el cuidado, preservación y conservación del medio ambiente sostenible, representando esto, una responsabilidad de todos los seres humanos que habitan el globo terráqueo. Tomando en consideración los impactos de los daños ambientales y colocando como ejemplo, la contaminación en una cuenca que engloba cañadas, arroyos y ríos, con el consecuente impacto negativo del medio ambiente, en especial de los recursos naturales que generan pérdidas no recuperables.

Según Mancheno y Ramos (2015) citados por Arteaga y García (2021) mencionan que la determinación de pasivos ambientales da a conocer si existe algún foco de contaminación al recurso, el cual altere la calidad del mismo y poder constatar si cumplen con los límites máximos permisibles de la normativa vigente, haciendo

referencia al uso que se le va a dar al agua, ya sea para consumo humano, actividades recreativas, etc.

De igual manera, en la Constitución de la República del Ecuador (2008), en el Título II, Art. 14, se reconoce el derecho de la población a vivir en un ambiente sano y ecológicamente equilibrado, que garantice la sostenibilidad y el buen vivir, sumak kawsay. Así mismo, en el art. 12, se establece el derecho humano al agua siendo fundamental e irrenunciable, puesto que se constituye en un patrimonio nacional estratégico de uso público, inalienable, imprescriptible, inembargable y esencial para la vida.

Por otro lado, el Texto Unificado de la Legislación Ambiental Secundaria contiene una serie de parámetros, los cuales sirven para conservar la calidad del agua ya sea para consumo humano u otras actividades, contemplando las características fisicoquímicas del agua, establecidas en el libro VI, Anexo I, relacionada a la calidad ambiental y de descarga de efluentes al recurso agua (Texto Unificado de Legislación Secundaria del Ministerio del Ambiente [TULSMA], 2015).

Por lo tanto, la presente investigación se orienta principalmente en identificar los focos de contaminación que ocasionan un impacto ambiental y la generación de pasivos ambientales en el Río Cucaracha, con el fin de establecer propuestas de mitigación de los impactos identificados, reduciendo así la contaminación de los cauces hídricos del cantón La Concordia.

1.3. OBJETIVOS

1.3.1. OBJETIVO GENERAL

Evaluar los pasivos ambientales puntuales sobre el recurso agua generados por las actividades de extracción de aceite de palma africana del río Cucaracha, en el cantón La Concordia

1.3.2. OBJETIVOS ESPECÍFICOS

- Establecer aspectos e impactos negativos asociados a pasivos ambientales generados por extractoras de aceites en el río Cucaracha, cantón La Concordia.
- Valorar los pasivos ambientales puntuales generados en el río Cucaracha, cantón La Concordia.
- Proponer medidas de mitigación de los pasivos ambientales significativos.

1.4. IDEA A DEFENDER

Las actividades de extracción de aceite de palma africana inciden negativamente en la generación de pasivos ambientales de riesgo crítico.

CAPÍTULO II. MARCO TEÓRICO

2.1. ACTIVIDAD INDUSTRIAL

Según Romero (2010) la actividad industrial proveniente de fábricas provoca un alto impacto en el recurso agua, el cual es considerado de gran magnitud debido especialmente a los contaminantes que provienen de esta actividad, tales como: sólidos sedimentables y disueltos, material flotante y coloidal y otros componentes de alta toxicidad; mismos que, también tienen un fuerte impacto sobre la salud humana.

Tamayo y Esquivel (2014) mencionan que, la industria impacta positivamente en el desarrollo socioeconómico de las regiones en donde se estable esta actividad, ayudando a mejorar la calidad de vida de sus habitantes; no obstante, desde el punto de vista ambiental, esta actividad es la causante de desequilibrar el entorno por medio de la contaminación y degradación que ocasiona a los recursos naturales, situación que no solo se traduce en un problema ambiental sino también de salud pública.

Por lo tanto, se puede decir que, la contaminación a causa del desarrollo industrial ha sido una problemática casi imposible de controlar, afectando los recursos esenciales para el sustento de la vida y degradando los ecosistemas que son imprescindibles para mantener la biodiversidad tanto de flora como de fauna. Resaltando que, la principal forma de contaminación de esta actividad es la descarga de sustancias tóxicas a la atmósfera y el desecho de residuos industriales a los cuerpos de agua (García, 2015).

2.2. ACTIVIDAD PALMICULTORA

De acuerdo a Arellano (2017) la palma *Elaeis guineensis* es un cultivo que también es conocida como palma africana, el cual se ha distribuido aceleradamente en gran parte de los países Sudamericanos. A pesar de los beneficios económicos que generan las palmas, su cultivo es visto como un grave problema ambiental, sobre todo para las poblaciones locales en donde se desarrolla la actividad. Vale destacar que, la demanda de esta planta se la ha atribuido al uso excesivo del aceite de palma para la producción de alimentos y otros insumos.

De esta manera también lo sustentan Agustín y Albuquerque (2018) quienes argumentan que, la expansión y la distribución de la palma africana durante los últimos

años han sido relacionadas debido a dos factores de mayor relevancia: su uso para producir energía mediante el agrocombustible y su uso en las industrias alimenticias y farmacéuticas.

En el caso de Ecuador, este se encuentra en el puesto siete del mundo y en el dos de América Latina en cuanto a la producción de aceite de palma, reportándose su mayor registro en el año 2016 con un total de 319.000 ha sembradas entre las regiones de la amazonía, interandina y litoral. Además, en la provincia de Esmeraldas también existen cantones donde se desarrolla esta actividad, siendo los lugares más destacados: Eloy Alfaro, San Lorenzo, Quinindé (mayor producción), Muisne (menor producción) y la capital Esmeraldas (Lalaleo, 2021).

Por otro lado, Lalaleo (2021) manifiesta que, la palmicultura es una actividad que ha ayudado al desarrollo socioeconómico de varias localidades, pero debido a su alta demanda el medio ambiente se ha visto afectado al igual que los ecosistemas y los recursos naturales. También ha sido evidente que esta actividad altera en gran medida la calidad del aire y agua, generando de igual forma problemas en la salud y conflictos sociales por este motivo.

Narváez *et al.* (2015) hace referencia que, el proceso de extracción del aceite crudo inicia con la esterilización, seguido por el bunch stripping o desfrutamiento, luego pasa por el digestor y por último el prensado. De este último proceso se generan descargas de líquidos (residuos de lodos, aceite y agua) y sólidos (residuos de fibras y nueces). En la figura 2.1 se expone detalladamente el procedimiento antes mencionado:

Extracción de aceite crudo

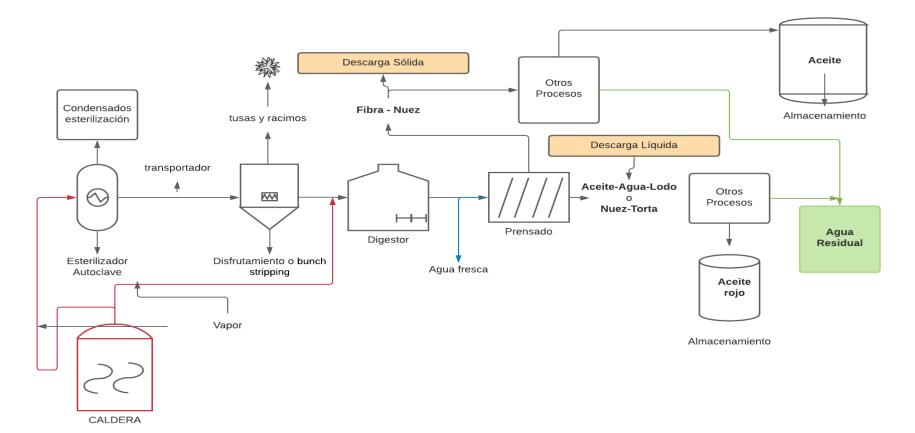


Figura 2.1. Diagrama de flujo

2.3. CORRIENTES RESIDUALES POR PALMICULTURA

Narváez (2015) argumenta que, la producción del aceite de palma es la causante de generar altas cantidades de residuos sólidos, líquidos y gasesos; siendo los residuos sólidos más comunes: hojas, semillas, racimos, troncos y fibras. En cuanto a los residuos líquidos destaca el POME o tambien conocido como efluente de la palma africana, generado al final de la producción y contiene especialmente grasas, aceites, materia orgánica, sólidos totales y material de celulosa.

2.4. ASPECTOS E IMPACTOS AMBIENTALES

Según la Internacional Organization for Standardization [ISO] (2018) los aspectos ambientales son componentes derivados de las actividades empresariales, ya sean servicios o productos y que tienen relación con el medio ambiente. Por ello, se debe identificar la diferencia entre los aspectos significativos y los normales, siendo algunos de estos más agresivos para el entorno y sus recursos.

Por su lado, Perevochtchikova (2013) expresa que, los impactos ambientales corresponden a los efectos que se producen en el ambiente y los espacios naturales debido a la actividad antropogénica en un periodo determinado. De esta forma, se puede afirmar que, el impacto ambiental incluye los efectos adversos que se dan en los ecosistemas y las poblaciones humanas, especialmente por el uso indiscriminado de los recursos naturales, la gestión inadecuada de residuos sólidos, el cambio de uso en el suelo y la emisión de sustancias contaminantes hacia la atmósfera.

Asimismo, es importante dar a conocer que, para llevar a cabo la identificación adecuada de los aspectos e impactos ambientales es meritorio determinar inicialmente en qué momento se necesita de una mejora o de un control más estricto; de este modo, se establecen medidas prioritarias que deben ser implementadas de forma inmediata (Perevochtchikova, 2013). En este sentido, también es relevante expresar que, la identificación de los aspectos ambientales significativos corresponde a un proceso continuo y eficaz que permite la mejora de los procesos empresariales y por ende del desempeño ambiente por medio de un Sistema de Gestión Ambiental (Pérez, Espinoza, & Peralta, 2016).

2.5. PASIVOS AMBIENTALES

De la Torre (2020) expone que, un pasivo ambiental hace referencia a los efluentes, instalaciones, entornos, emisiones y ecosistemas que son contaminados por efecto de la actividad humana o por servicios degradados que afectan la salud de los seres humanos, la calidad medio ambiental y la función normal de los ecosistemas.

Por su parte, Peña (2013) formula que, un pasivo ambiental corresponde a aquellos lugares que son contaminados debido a la exposición de sustancias y residuos peligrosos que no pudieron ser remediados de forma oportuna para evitar su distribución como contaminante. Por lo tanto, esos sitios implican que sean remediados con rapidez para disminuir su impacto ambiental y social, los cuales suelen perdurar por muchos años en tiempo y espacio.

Respecto a esta temática, Russi y Martínez (2002) establecen que, los pasivos ambientales son la suma de los daños desproporcionados que no han sido compensados por las empresas que los ocasionan y que tampoco han tenido ninguna forma de indemnización para con el medio ambiente ni sus recursos afectados.

2.5.1. PASIVOS AMBIENTALES DE FLUJO

Respecto a los pasivos ambientales de flujo Ochoa y Valverde (2009) señalan que, estos corresponden a todas aquellas infraestructuras o espacios que son ocupados por alguna actividad antropogénica, que mientras su funcionamiento genera daños ambientales importantes que pueden ser valorados económicamente por la gravedad del daño hacia las funciones de consumo y producción de la sociedad.

2.5.2. PASIVOS AMBIENTALES ACUMULADOS

En correspondencia a los pasivos ambientales acumulados, se puede decir que, estos son infraestructuras o espacios que se han visto afectados por efecto de operaciones empresariales y otras actividades humanas, que se producen luego del abandono de dichas infraestructuras o como consecuencia de impactos no remediados a causa de un pasivo de flujo en operación (Ochoa y Valverde, 2009).

2.5.3. PASIVOS AMBIENTALES PUNTUALES

Sobre esta temática, Melo (2011) considera que, un pasivo ambiental puntual hace referencia a las emisiones, efluentes y espacios donde se genera contaminación a consecuencia de actividades humanas específicas como: ganadería, agricultura, industrias, entre otras; cuyo rango de afectación contempla los 500 hasta los 1000 metros aledaños al sitio de emisión y que constituye un riesgo potencial y continuo para el ambiente y los seres humanos.

2.5.4. PASIVOS AMBIENTALES EN CUERPO HÍDRICO

Para Guerrero (2018) citado por Arteaga y García (2021) exponen que, la contaminacion de los cuerpos hídricos puede darse tanto en zonas rurales como urbanas, aunque con niveles de contaminación diferentes. Los cuerpos de agua son altamente afectados por los pasivos ambientales que se encuentran cerca de las riberas de estos y al ser recursos no renovables, las acciones para su remediación y recuperación contemplan costos elevados. Los tipos de pasivos que pueden encontrarse en cuerpos hídricos se describen a continuación:

Tabla 2. 1. Pasivos ambientales en cuerpos hídricos.

Pasivos ambientales en cuerpos hídricos				
Industrial Desperdicios provenientes de descargas industriale				
Domiciliario	Residuos generados por los hogares y comunidades que			
Domidiiano	pueden ser sólidos o líquidos.			
Urbano	Corresponde a la materia orgánica e inorgánica que			
Ulballo	genera una población.			
Comorcial	Desechos de actividades antrópicas que pueden ser de			
Comercial	origen orgánico e inorgánico.			
- (0040) H. I				

Fuente. Guerrero (2018) citado por Arteaga y García (2021).

2.6. IDENTIFICACIÓN DE PASIVOS AMBIENTALES

Un estudio realizado por Flores y Pinargote (2019) demuestra la forma en que se debe realizar una ficha de pasivos ambientales, la cual tiene como fin determinar el tipo de pasivo identificando los puntos de mayor contaminación, estableciendo los siguientes factores:

- Origen o causa del pasivo.
- Tipo del pasivo.
- Ubicación del pasivo.
- Categorización ambiental del pasivo.
- Caracterización del pasivo.
- Valoración de pasivo (matriz de importancia).
- Diseño de las medidas correctivas o de mitigación.

2.6.1. MATRIZ DE IMPORTANCIA

De acuerdo a García *et al.* (2014) una matriz de importancia consiste en modificar la matriz de Leopold que se utiliza normalmente en la identificación, determinación y valoración de impactos negativos que son provocados por los pasivos ambientales. Esta matriz, es usada en conjunto con una ficha de registro, misma que contempla varias calificaciones puntuales que son determinadas mediante una fórmula que ayuda a conocer la importancia de pasivo ambiental. A continuación, se describe la ecuación utilizada para la valoración de la matriz de importancia:

- IM: matriz de importancia.
- I: intensidad.
- S: sinergia.
- R: reversibilidad.
- Al: área de influencia.
- AC: acumulación.
- PE: permanencia del efecto.
- PZ: momento
- RE: recuperabilidad.
- RM: periodicidad.
- RCE: relación causa/efecto.

Tabla 2. 2. Matriz de importancia para evaluación de pasivos.

IM= 3(I)+2(AI)+(PZ)+®+(S)+(AC)+(RM)+(RE)+(RCE)				
Intensidad (I)	Valor	Área de Influencia (AI)	Valor	
Baja	2	Local	2	
Media	4	Regional	4	
Alta	6	Extra regional	8	
Momento (PZ)		Sinergia (S)		
Largo plazo	4	Sin sinergismo	1	
Medio plazo	2	Sinérgico	2	
Inmediato	1	Muy sinérgico	4	
Reversibilidad ®		Recuperabilidad (RE)		
Corto Plazo	1	Recuperable	2	
Medio Plazo	2	Mitigable	4	
Irreversible	4	Irrecuperable	8	
Acumulación (AC)		Relación causa-efecto (RCE)		
Simple	1	Indirecto	1	
Acumulativo	4	Directo	4	
Periodicidad Regularidad		Permanencia del efecto (PE)		
de manifestación (RM)				
Descontinuo	1	Fugaz	1	
Periódico	2	Temporal	2	
Continuo	4	Permanente	4	

Bajo este contexto, García *et al.* (2014) describen los atributos de valoración de los pasivos ambientales que permiten establecer la importancia de dichos pasivos, presentados en la tabla 2.3:

Tabla 2. 3. Atributos de valoración de los pasivos ambientales.

Atributos de valoración
Es el área de influencia teórica del impacto en relación con el entorno
del proyecto.
Corresponde al grado de incidencia de la acción sobre el factor, en el
ámbito específico en que actúa.
Posibilidad de reconstrucción del factor afectado por el proyecto, es
decir, la posibilidad de retornar a las condiciones iniciales previas a la
acción por medios naturales, una vez aquella deja de actuar sobre el
medio.

A supporte side	Incremento progresivo de la manifestación del efecto, cuando persiste
Acumulación	de forma reiterada la acción que lo genera.
Cinamia	Este atributo contempla el reforzamiento de dos o más efectos
Sinergia	simples.
Plazo de manifestación	Tiempo que transcurre entre la aparición de la acción y el comienzo
Flazo de manifestación	del efecto sobre el factor del medio considerado.
Relación causa/efecto	Describe la forma de manifestación del efecto sobre un factor, como
Relacion causa/electo	consecuencia de una acción.
	Tiempo en que permanecería el efecto desde su aparición y a partir
Permanencia del efecto	del cual el factor afectado retornaría a las condiciones iniciales previas
reimanencia dei electo	a la acción por medios naturales, o mediante la introducción de
	medidas correctoras.
	Explica la posibilidad de retornar a las condiciones iniciales previas a
Recuperabilidad	la actuación (parcial o total), por medio de la intervención humana
	(introducción de medidas correctoras).
Regularidad de manifestación	Se refiere a la periodicidad o regularidad de manifestación del efecto.
	Fuente. García et al. (2014).

Desde esta perspectiva, Guerrero (2018) citado por Arteaga y García (2021) plantean un método que permite determinar la combinación de los criterios de calificación, representado por medio de valores mínimos y máximos, ayudando a diferenciar los tipos de importancia tanto para los impactos positivos como negativos.

Irrelevantes (IM<25)
Moderado (25>IM<50)
Severo (50>IM<75)
Crítico (75>IM)

Tabla 2. 4. Matriz de importancia para evaluación de pasivos.

Denominación del Pasivo	Rangos del Valor de Importancia (IM)						
Irrelevantes	IM<25						
NO CRÍTICOS							
Moderado	25>IM<75						
Severo	50>IM<75						
CRÍTICOS							
Crítico	75>IM						

2.6.2. MEDIDAS DE MITIGACIÓN

Según López et al. (2017) la Environmental Protection Agency establece a las medidas de mitigación como un proceso de tratamiento que contempla la identificación y determinación de medidas que ayudan a mitigar los riesgos potenciales durante un proceso de evaluación ambiental, pudiendo eliminar el riesgo o minimizar su probabilidad de ocurrencia. Luego de la identificación de los pasivos ambientales, es necesario el establecimiento de programas de saneamiento que ayuden a la reducción de riesgos significativos. A continuación, se presentan algunos métodos alternativos como medidas de mitigación:

Tabla 2. 5. Métodos alternativos de mitigación.

Métodos alternativos			
Estabilización física	Refuerzo de las paredes, relleno total o parcial del tramo,		
Estabilizacion fisica	estabilización de taludes, entre otros.		
Control de acceso	Permite minimizar los riesgos relacionados con la		
Control de acceso	seguridad.		
Control hidrológico y tratamiento de agua	Incluye la desviación de agua, bombeo de pozos		
Control hidrológico y tratamiento de agua	profundos, tratamientos químicos y biológicos.		
Control de arrastre y cubrimiento de relaves	Cubrimiento superficial y la revegetación.		

Fuente. López et al. (2017).

2.7. CONTAMINACIÓN DEL RECURSO AGUA POR ACTIVIDADES INDUSTRIALES

2.7.1. AGUAS SUPERFICIALES

- Según el TULSMA (2015) las aguas superficiales corresponden a todo cuerpo de agua que almacena este líquido vital en la superficie de un espacio.
- Mientras que, el Ministerio para la Transición Ecológica y el Reto Demográficos
 [MITECO] () menciona que, las aguas superficiales hacen referencia a las
 corrientes que se encuentran en la superficie del suelo, estas discurren por la
 superficie debido a las precipitaciones de cada zona.

2.7.2. CUERPO RECEPTOR

Los cuerpos receptores corresponden a lagos, lagunas, cauces, depósitos, corrientes, estuarios o ríos que son aptos para recibir descargas de aguas residuales de forma directa o indirecta (TULSMA, 2015).

2.7.3. EMPRESAS INDUSTRIALES

Actualmente, el impacto ambiental que se genera por el crecimiento de las empresas es considerado un gran problema para el medio ambiente, ya que ha sido evidente que el sector industrial y sus múltiples actividades generan fuertes impactos sobre el ecosistema y sus recursos; además, de producir efectos significativos sobre la salud humana. Por lo antes expuesto, es que se debe llevar a cabo un análisis exhaustivo enfocado en la identificación y ponderación de la severidad y magnitud de los potenciales impactos ambientales sobre el medio ambiente (Nevárez et al., 2016).

Desde este punto de vista, Chiquín y Troya (2013) en su investigación realizada en el río Cucaracha demostraron que, en este se evidenció la presencia de pasivos ambientales como producto del establecimiento de tres empresas palmicultoras que se asentaban cerca de este cuerpo de agua, siendo estas empresas consideradas los puntos de estudio como influencia de la actividad industrial. Finalmente, se realizaron análisis fisicoquímicos enfocados en valorar la importancia de los pasivos ambientales que contenía el río Cucaracha.

2.8. PARÁMETROS DE LA CALIDAD DE AGUAS PARA LA PRESERVACIÓN DE LA VIDA ACUÁTICA Y SILVESTRES EN AGUAS DULCES

2.8.1. ANÁLISIS FISICOQUÍMICOS

En la siguiente tabla 2.6 se exponen los análisis fisicoquímicos más relevantes que se pueden realizar a los cuerpos de agua, tal como se muestra a continuación:

Tabla 2. 6. Análisis físicoquímicos.

	Logaritmo de la concentración de iones hidrógeno que indica el ácido o básico			
pН	del mismo, la escala de pH se extiende desde el 0 (muy ácido) al 14 (muy			
ρ	alcalino), siendo 7 la neutralidad exacta a 25°C, el pH en las aguas puede ser			
	de tipo natural o artificial que puede variar entre 4.5 y 8.			
	La DBO se utiliza como una medida de cantidad de oxígeno que es necesaria			
DBO₅	en la oxidación de materia orgánica que está presente en una muestra de			
	agua, como efecto de la acción de oxidación aerobia (Lecca y Lizama, 2014).			
	Muestra el contenido de materia orgánica en el recurso agua, sirve para medir			
DQO	el oxígeno equivalente a la materia orgánica oxidable mediante un agente			
DQO	oxidativo, en la actualidad son utilizados para medir la materia orgánica en las			
	aguas residuales (Lecca y Lizama, 2014).			
	se establece por la absorción de radiación en las capas superiores del líquido.			
Temperatura	Las variaciones de temperatura afectan a la solubilidad de sales y gases en			
	agua y en general a todas sus propiedades (Calderón y Orellana, 2015).			
	Es un factor ambiental importante en las aguas naturales y afecta al			
Turbidos	ecosistema. Este parámetro interfiere con usos recreativos y el aspecto			
Turbidez	estético del agua, constituyéndose en un obstáculo para la eficacia de los			
	tratamientos de desinfección (Lacfuerte, 2010).			
	Son compuestos orgánicos constituidos por ácidos grasos de origen animal y			
Acoitos y grasas	vegetal. Las sustancias grasas se clasifican en grasas y aceites, algunas de			
Aceites y grasas	sus características más representativas son baja densidad, poca solubilidad			
	en agua, baja o nula biodegradabilidad (Toapanda y Chang, 2009).			
	Es la habilidad de una solución para conducir electricidad. Pequeñas			
	partículas cargadas eléctricamente, llamadas iones, pueden llevar una			
Conductividad eléctrica	corriente eléctrica a través de soluciones de agua. Estos iones provienen			
	principalmente de los ácidos y sales de la solución de fuente (Rodríguez,			
	2009).			
	La concentración de sólidos disueltos en el agua se debe a la presencia de			
Sólidos Totales Disueltos	minerales, gases producto de descomposición de materia orgánica, metales y			
Solidos Totales Disueltos	compuestos químicos orgánicos que dan olor, color, sabor y toxicidad al agua			
	que los contiene (Toasa, 2012).			
	Son transportados gracias a la acción de arrastre y soporte del movimiento del			
Sólidos Suspendidos	agua; los más pequeños (menos de 0.01 mm) no sedimentan rápidamente y			
Totales	se consideran sólidos no sedimentables y los más grandes (mayores de 0.01			
	mm) son generalmente sedimentables (IDEAM, 2007).			

2.9. CRITERIOS DE CALIDAD SEGÚN EL TUSLMA

Esta norma técnica permite determinar los límites permisibles, prohibiciones y disposiciones establecidas para llevar a cabo las descargas en cuerpos hídricos o sistemas de alcantarillados, proporcionando una tabla con los valores específicos que se deben considerar para los criterios de calidad de agua para sus diferentes usos; además, de exponer los procedimientos a seguirse para conocer la existencia de contaminantes en los cuerpos de agua (TULSMA, 2015).

Tabla 2. 7. Límites máximos permisibles para aguas de consumo humano y uso doméstico, con tratamiento convencional.

Parámetros	Expresado Como	Unidad	Límite Máximo Permisible
Aceites y Grasas	Sustancias solubles en hexano	mg/l	0,3
Aluminio	Al	mg/l	0,2
Amoniaco	N-Amoniacal	mg/l	1,0
Amonio	NH ₄	mg/l	0,05
Arsénico (total)	As	mg/l	0,05
Bario	Ва	mg/l	1,0
Cadmio	Cd	mg/l	0,01
Cianuro (total)	CN⁻	mg/l	0,1
Cloruro	CI	mg/l	250
Cobre	Cu	mg/l	1,0
Coliformes Totales	nmp/100 ml		3 000
Coliformes Fecales	nmp/100 ml		600
Color	color real	unidades de color	100
Compuestos fenólicos	Fenol	mg/l	0,002
Cromo hexavalente	Cr+6	mg/l	0,05
Demanda Bioquímica de Oxígeno	DBO ₅	ma/l	2,0
(5 días)	DDU5	mg/l	۷,0
Dureza	CaCO₃	mg/l	500

Fuente. TULSMA (2015).

 Tabla 2. 8. Criterios de calidad para aguas destinadas para fines recreativos.

Parámetros	Expresado como Unidad		Límite máximo permisible	
Coliformes fecales	nmp por cada 100 ml		200	
Coliformes totales	nmp por cada 100 ml		1 000	
Compuestos fenólicos	Expresado como fenol	mg/l	0,002	
Oxigeno disuelto	O.D.	mg/l	No menor al 80% de Concentración de saturación y no menor a 6 mg/l	
Materia flotante	Visible		Ausencia	
Potencial de hidrógeno	рН		6,5 – 8,5	
Metales y otras *sustancias tóxicas		mg/l	cero	
Organofosforados y carbamatos (totales)	Concentración de organofosforados y carbamatos totales.	mg/l	0,1 (para cada compuesto detectado)	
Organoclorados (totales)	Concentración de organoclorados totales.	mg/l	0,2 (para cada compuesto detectado)	
Residuos de petróleo	visibles		Ausencia	
Tensoactivos	Sustancias activas al azul de metileno.	mg/l	0,5	
Grasas y aceites	Sustancias solubles en hexano	mg/l	0,3	
Transparencia de las aguas			Mínimo 2,0 m.	
medidas con el disco secchi			IVIIIIIII 2,0 III.	
Relación hidrógeno, fósforo			15:1	
orgánico				

Fuente. TULSMA (2015).

Tabla 2. 9. Límites de descarga a un cuerpo de agua dulce.

Parámetros	Expresado como	Unidad	Límite máximo permisible	
Aceites y Grasas.	Sustancias solubles en hexano	mg/l	0,3	
Alkil mercurio		mg/l	NO DETECTABLE	
Aldehídos		mg/l	2,0	
Aluminio	Al	mg/l	5,0	
Arsénico total	As	mg/l	0,1	
Bario	Ва	mg/l	2,0	
Boro total	В	mg/l	2,0	
Cadmio	Cd	mg/l	0,02	
Cianuro total	CN-	mg/l	0,1	
Cloro Activo	CI	mg/l	0,5	
Cloroformo	Extracto carbón cloroformo ECC	mg/l	0,1	
Cloruros	Cl-	mg/l	1 000	
Cobre	Cu	mg/l	1,0	
Cobalto	Co	mg/l	0,5	
Coliformes Fecales	Nmp/100 ml		Remoción > al 99,9 %	
Color real	Color real	unidades de color	Inapreciable en dilución: 1/20	
Compuestos fenólicos	Fenol	mg/l	0,2	
Cromo hexavalente	Cr+6	mg/l	0,5	
Demanda Bioquímica de Oxígeno (5 días)	D.B.O ₅ .	mg/l	100	
Demanda Química de Oxígeno	D.Q.O.	mg/l	250	
Dicloroetileno	Dicloroetileno	mg/l	1,0	
Estaño	Sn	mg/l	5,0	
Fluoruros	F	mg/l	5,0	
Fósforo Total	Р	mg/l	10	
Hierro total	Fe	mg/l	10,0	
Hidrocarburos Totales de Petróleo	TPH	mg/l	20,0	
Manganeso total	Mn	mg/l	2,0	
Materia flotante	Visibles		Ausencia	
Mercurio total	Hg	mg/l	0,005	
Níquel	Ni	mg/l	2,0	
Nitratos + Nitritos	Expresado como Nitrógeno (N)	mg/l	10,0	

Nitrógeno (N) | Fuente. TULSMA (2015).

2.10. CRITERIOS DE CALIDAD SEGÚN EL SUNNAS

De acuerdo a la Superintendencia Nacional de Servicios y Saneamiento (2019) específicamente en su Ley General de Salud No. 26842 manifiesta el reglamento que tiene como finalidad dirigir la gestión de la calidad del agua, el control y supervisión sanitaria del agua, la fiscalización y registros sanitarios respecto a los sistemas de abastecimiento de agua para el consumo humano. A continuación, se exponen los límites permisible referenciales de los parámetros que se deben tener en cuenta para la calidad del agua:

Tabla 2. 10. Límites máximos permisibles referenciales a los parámetros de calidad de agua.

Parámetro	LMP	Referencia		
Coliformes totales, UFC/100 mL	0 (ausencia)	(1)		
Coliformes termotolerantes, UFC/100 mL	0 (ausencia)	(1)		
Bacterias heterotróficas, UFC/mL	500	(1)		
рН	6,5 – 8,5	(1)		
Turbiedad, UNT	5	(1)		
Conductividad, 25°C uS/cm	1500	(3)		
Color, UCV – Pt-Co	20	(2)		
Cloruros, mg/L	250	(2)		
Sulfatos, mg/L	250	(2)		
Dureza, mg/L	500	(3)		
Nitratos, mg NO ₃ -/L (*)	50	(1)		
Hisman manth		0,3 (Fe + Mn = 0,5)		
Hierro, mg/L	0,3	(2)		
Management may/	0.0	0,2 (Fe + Mn = 0,5)		
Manganeso, mg/L	0,2	(2)		
Aluminio, mg/L	0,2	(1)		
Cobre, mg/L	3	(2)		
Plomo, mg/L (*)	0,1	(2)		
Cadmio, mg/L (*)	0,003	(1)		
Arsénico, mg/L (*)	0,1	(2)		
Mercurio,mg/L (*)	0,001	(1)		
Cromo, mg/L (*)	0,05	(1)		
Flúor, mg/L	2	(2)		
SELENIO, MG/L	0,05	(2)		

Fuente. TULSMA (2015).

2.11. NORMA TÉCNICA ECUATORIANA INEN PARA TOMA Y CODIFICACIÓN DE MUESTRA

La norma técnica INEN 2169:2013 permite el establecimiento del tipo de recipientes que se deben utilizar en la toma de muestras para la realización de análisis fisicoquímicos de las aguas naturales, siendo los adecuados las botellas de polietileno y las de vidrio de borosilicato. Asimismo, esta norma indica que, las botellas de pico angosto que se usan para determinar la DBO deben poseer tapones de vidrio esmerilado que ayuden a reducir el ingreso de aire, debiéndose utilizar también un sellante especial para el proceso de transportación (Instituto Ecuatoriano de Normalización [INEN], 2013).

Por otro lado, la norma técnica INEN (2013) manifiesta que, el origen de las muestras de agua y las condiciones en las cuales han sido recolectadas deben ser registradas, cuyos datos deberán ser colocados en las botellas en donde se encuentren las muestras; puesto que, la normativa indica que los análisis de agua sin su respectivo etiquetado generan resultados limitados y poco eficientes.

2.12. ÍNDICE CALIDAD DE AGUA DEL RÍO CUCARACHA

De acuerdo a la investigación realizada por Chiquín y Troya (2013) el río Cucaracha corre serio peligro debido a la contaminación de sus aguas que avanza a pasos alarmantes, en este cuerpo de agua se han observado capas aceitosas, deslizándose corriente abajo y cantidades considerables de residuos sólidos; al parecer, las fábricas de aceites de palma aceitera, que se encuentran a sus alrededores, arrojan sus desperdicios a este río, afectando de igual forma a las especies que dependen de él.

PARÁMETR	PUNTOS DE MUESTRAS DE AGUA RÍO CUCARACHA					TULAS		
PARAMETROS		Testigo	UNIPAL	Teobroma 1	Teobroma 2	MONSANDO S.A.	Puente Universidad	Límite Máximo Permitido
		6,8	7,2	7,2	7,2	7,2	7,7	6,5 – 9
Temperatura	°C	25	25	24,5	25	24,5	24,5	Condiciones naturales + 3 Máxima 32
Conductividad	μs/cm	70,2	210,9	96,6	242,0	295,5	244,0	No existe parámetro de comparación
Color	UC	0	5	2,5	30	25	25	No existe parámetro de comparación
Alcalinidad	mg/l	13,2	34,2	25,4	43,0	41,0	33,2	No existe parámetro de comparación
Dureza	mg/I	13,1	36,9	21,4	34,5	33,0	28,2	No existe parámetro de comparación
O.D	mg/l	5,7	4,7	4,4	3,9	3,9	4,3	No menor al 60% y no menor a 5 mg/l

Figura 2.2. Parámetros ICA del Río Cucaracha.

Lo que se pudo determinar en el río Cucaracha fue que, el pH en los distintos puntos de muestreo si estaban dentro de los parámetros permisibles establecidos con valores que oscilan entre los 6,8 y 7,7. Estas modificaciones en el pH se consideran un indicativo la existencia de fertilizantes, especialmente cuando se efectúan muestreos continuos en conjunto con la conductividad del agua.

En el caso de la temperatura, los puntos de muestreo del río demostraron valores entre 24,5°C y 25 °C, cantidades que evidencian que estos se encuentran dentro de los parámetros establecidos para este fin. En este sentido, vale resaltar que, la medición de la temperatura es una acción muy importante para conocer la calidad del agua, ya que mediante esta se logra conocer si se está afectando los procesos biológicos, físicos y químicos del agua que contribuyen en la aparición de agentes contaminantes.

Respecto a la conductividad eléctrica muestreada en el río Cucaracha, se evidenció que esta oscila entre los 70,2 µs/cm en el primer punto de medición, demostrando un ascenso hasta los 295,5 µs/cm en el último punto de muestreo correspondiente a MOLSANDO S.A., la cual es una empresa que se dedica a la extracción de aceite de palma.

En correspondencia a los valores de color que posee el río Cucaracha, se determinó que estos oscilan entre 0 UC a 30 UC en los diferentes puntos de muestreo. Por otro lado, los datos de alcalinidad se reportan entre 13,2 mg/l y 41,0 mg/l, mostrando los

valores más altos en el punto de muestreo de la empresa MOLSANDO S.A. En este contexto, cabe señalar que, la alcalinidad ayuda a demostrar la productividad que poseen los cuerpos hídricos naturales, sirviendo como una fuente importante donde se lleva a cabo la fotosíntesis.

Por último, los valores de oxígeno disuelto varían entre 43, mg/l y 5,7 mg/l, evidenciándose que, a excepción del primer punto de muestreo, todos los demás se encuentran por debajo de los parámetros permisibles establecidos por el TULSMA para este parámetro. Por ello, es necesario conocer el oxígeno disuelto que posee un cuerpo de agua, ya que ayuda a determinar si en los procesos de degradación predominan organismos anaerobios o aerobios, permitiendo definir la biodiversidad y supervivencia de los ecosistemas bióticos del agua.

CAPÍTULO III. DESARROLLO METODOLÓGICO

3.1. UBICACIÓN

El presente trabajo de investigación se llevó a cabo en el río Cucaracha ubicado en el cantón La Concordia, provincia de Santo Domingo de los Tsáchilas, este nace a la altura del kilómetro 9 y en el trayecto se une con pequeños afluentes, desembocando en el río Mache, para posteriormente confluir en el río Quinindé.



Figura 3.1. Mapa de ubicación

3.2. DURACIÓN DE TRABAJO

La presente investigación tuvo una duración de 9 meses, a partir de la aprobación de la propuesta de titulación, comprendiendo los meses de febrero a octubre del 2022.

3.3. VARIABLES EN ESTUDIO

3.3.1. VARIABLE INDEPENDIENTE

Descargas residuales de las extractoras de aceite.

3.3.2. VARIABLE DEPENDIENTE

Pasivos ambientales.

3.4. TÉCNICAS

En la identificación de aspectos e impactos ambientales se emplearon las siguientes técnicas:

3.4.1. OBSERVACIÓN

Se empleó con el propósito de observar fenómenos y situaciones, para obtener información necesaria para la investigación (Castellanos, 2021), en este caso sobre la caracterización del pasivo ambiental (ubicación y coordenadas, descripción, categoría, causa y tipo) tomando como referencia la investigación de (Enriquez, 2018).

3.4.2. GEORREFERENCIACIÓN

Para la georreferenciación de los puntos de muestreo se utilizó un GPS Garmin Etrex 10, en primera instancia se visitó el punto de pasivo identificado previamente en el recorrido de observación, se registraron los datos de la ubicación en un bloc de notas de acuerdo a lo expuesto por él (Instituto Nacional de Tecnología Agropecuaria de Argentina, 2011).

3.4.3. USO DE SOFTWARE

Se utilizó el software ArcMap versión 10.6 para el procesamiento de la información geográfica con el fin de generar mapas temáticos del área de estudio (Guevara, 2016).

3.4.4. MUESTREO

Flores y Pinargote, (2019) indican que esta técnica, facilitaría conocer la afectación del pasivo sobre el ambiente receptor que es el agua, en cuanto a la realización de los análisis fisicoquímicos.

3.5. PROCEDIMIENTOS

3.5.1. FASE I. ESTABLECER LOS ASPECTOS E IMPACTOSNEGATIVOS ASOCIADOS A PASIVOS AMBIENTALES GENERADOS POR EXTRACTORAS DE ACEITE EN EL RÍO CUCARCAHA, CANTÓN LA CONCORDIA

Actividad 1. Reconocimiento del área de estudio

Se realizó el recorrido al área de estudio mediante transporte público, ubicándose entre la parroquia Plan Piloto perteneciente al cantón La Concordia y la carretera Transversal Norte E20, específicamente con sus coordenadas E668602 y N10008961 siendo el punto inicial, se caminó a orillas del cauce desde la Extractora "Unipalm S.A", posteriormente por la Extractora "Teobroma" hasta la Extractora "Molsando S. A, según lo dispuesto por Chiquín y Troya, (2013), reconociendo el área de estudio para la determinación de los pasivos ambientales en el recurso hídrico.

Actividad 2. Aplicación de una ficha para la identificación de los pasivos ambientales, aspectos e impactos

Se aplicó una ficha para la identificación de los pasivos ambientales (Tabla 3.1) propuesta por Guerrero (2018), la cual consta de dos componentes: el primero orientado a la identificación del pasivo y el segundo a la valoración; con respecto a la identificación correspondió en registrar dentro de la ficha; el tramo, la caracterización del pasivo ambiental, la ubicación (coordenadas-lado), descripción y foto; este proceso se realizó de acuerdo a como están posesionadas las extractoras, por lo tanto se detalló con un registro de campo en el que se reconocieron observaciones puntuales por cada pasivo. De acuerdo a lo expuesto por Flores y Pinargote, (2019) se identificaron los aspectos e impactos negativos presentes en el área de estudio con base a las fichas de identificación de pasivos ambientales registradas.

Tabla 3.1. Modelo de ficha de registro de pasivo ambiental

ESPAMMFL ESCUELA SUPERIOR POLITÉCNICA AGROPECUARIA DE MANABÍMANUEL FÉLIX LÓPEZ									
FICH	IA DE RE	GISTRO P	ASIVO	AMBIENTAL DE L	A SUBCUENCA BAJA I	DEL RÍO C	ARRIZAL		
TRAMO									
		C	ARACT	ERIZACIÓN DEL PA	ASIVO AMBIENTAL				
UBICACIÓN				UTM:			LA	DO	
			DESCI	RIPCIÓN DEL PASI	VO AMBIENTAL				
C	ATEGOR	IA				(CAUSA		
ECOLOGÍA									
CONTAMINACIÓN AMBIENTAL	-								
ASPECTO ESTETICO									
ASPECTO DE INTERES HUMANO	0								
			1	TIPO DE PASIVO A	MBIENTAL				
DESLIZAMIENTO O DERRUMBE					DAÑOS ECOLOGICO	S Y PASA.	IISTAS		
CONTAMINACIÓN DE AGUAS					DAÑOS A LAS FUENTES DE AGUA A POBLADOS				
ACCESO O POBLADOS INTERRU	JMPIDO	S			BOTADEROS LATERALES INDISCRIMINADOS				
EROSIÓN Y SEDIMENTACIÓN D	E CAUC	Ē		ÁREAS DEGRADADAS					
		,		MATRIZ DE IMPO					
INTENSIDAD (I)		ÁREA DE INF		JENCIA (AI)	MOMENTO (PZ)		REVERSIVIL	IDAD	(R)
BAJA		LOCAL			LARGO PLAZO		CORTO PLA	ZO	
MEDIO		REGION	AL		MEDIANO PLAZO		MEDIANO PLAZO		
ALTA		EXTRA REGION	AL		INMEDIATO		IRREVERSIB	LE	
EFECTO (RCE)		SINERG	IA (S)		ACUMULACIÓN(A	C)	PERIOCIDAI)
INDIRECTO		SIN SINERGI	ISMO		SIMPLE		DESCONTIN O	IU	
DIRECTO		SINERG	ICO		ACUMULATIVO		PERIODICO		
MUY SINERGICO		ICO_				CONTINUO			
RECUPERABILIDAD PER		MANE	NCIA DEL EFECTO						
RECUPERABLE MITIGARI E				FUGAZ					
MITIGABLE IRRECUPERABLE				TEMPORAL PERMANENTE					
IMPORTANCIA									
RESULTADOS (IM)									
				MEDIDAS DE MIT	TIGACIÓN				

3.5.2. FASE II. VALORAR LOS PASIVOS AMBIENTALES PUNTUALES GENERADOS EN EL RÍO CUCARACHA, CANTÓN LA CONCORDIA

Actividad 3. Determinación de los puntos de muestreo

Se emplearon criterios propuestos por Arteaga y García (2021) para el muestreo, estableciéndose dos estaciones de muestreo en cada pasivo ambiental, la primera toma de muestras se la realizó a 100 metros (aguas arriba (1A) antes de la descarga residual de las extractoras de aceites hacia el cauce y la segunda a 100 metros (aguas abajo (2D)) después de la descarga residual en el cuerpo hídrico.

Actividad 4. Toma y análisis de muestras

Para la obtención de las muestras, se utilizaron envases especiales referente al análisis, luego se rotularon con sus respectivas codificaciones, posterior a esto se llenó los envases completamente y se taparon de tal forma que no exista presencia de aire sobre la muestra según lo dispuesto en la norma técnica Ecuatoriana 2169:2013 (Instituto Ecuatoriano de Normalización [INEN], 2013).

Se realizaron las tomas de las muestras para reconocer la presencia de los pasivos ambientales, basados en los parámetros que se encuentran establecidos en el libro VI, Anexo I del Texto Unificado de la Legislación Secundaria del Medio Ambiente (TULSMA, 2015).

Los análisis fisicoquímicos que se analizaron fueron: pH, Temperatura, Conductividad Eléctrica, Turbidez, STD y SST, estos se realizaron en el Laboratorio Química Ambiental de la Escuela Superior Politécnica Agropecuaria de Manabí MFL, y los parámetros DBO₅, DQO, Aceites y Grasas se enviaron al Laboratorio de la Universidad de las América; para distinguir las muestras recolectadas se les asignó una codificación de identificación en función del nombre del pasivo ambiental, el cual se comprende de acuerdo al número de muestras tomadas antes **1A** y **2D** después del punto de contaminación identificado, dicha codificación se refleja en la tabla 3.2.

Tabla 3.2. Codificación de las muestras recolectadas

Codificación de muestra recolectadas					
Lugar de estudio	Código	Estación de Muestreo			
Extractora de Aceite, Unipalm S. A	E.A. U. 1.	Estación 1A			
Extractora de Aceite, Unipalm S. A	E.A. U. 2.	Estación 2D			
Extractora de Aceite, Teobroma	E.A. T. 1.	Estación 1A			
Extractora de Aceite, Teobroma	E.A. T. 2.	Estación 2D			
Extractora de Aceite, Molsando S. A	E.A. M.S.A. 1.	Estación 1A			
Extractora de Aceite, Molsando S. A	E.A. M.S.A. 2.	Estación 2D			

Actividad 5. Determinar la importancia del pasivo

Siguiendo lo propuesto por Guerrero (2018) se determinó la importancia del pasivo ambiental mediante una matriz de importancia (IM), para su ejecución se tomaron los datos de la ficha de registro de pasivo ambiental del río Cucaracha (Anexo 1), dentro de esta matriz se tomó en consideración la intensidad, área de influencia del pasivo, el momento y la sinergia en que ocurre dicho pasivo, la reversibilidad, acumulación, periodicidad y recuperabilidad del impacto que generará dicho pasivo, así como la permanencia de su efecto y la relación causa-efecto. La matriz de importancia (IM) se constituyó de la siguiente manera:

IM= Matriz de importancia

I= Intensidad

Al= Área de influencia

PZ= Momento

R= Reversibilidad

S= Sinergia

AC= Acumulación

RM= Periocidad

RE= Recuperabilidad

PE=Permanencia del efecto

RCE= Relación causa-efecto

Tabla 3.3. Guía de valoración de pasivos ambientales

IM= 3(I)+2(AI)+(PZ)+®+(S)+(AC)+(RM)+(RE)+(RCE)					
Intensidad (I)	Valor	Área de Influencia (AI)	Valor		
Baja	2	Local	2		
Media	4	Regional	4		
.Alta	6	Extra regional	8		
Momento (PZ)		Sinergia (S)			
Largo plazo	4	Sin sinergismo	1		
Medio plazo	2	Sinérgico	2		
Inmediato	1	Muy sinérgico	4		
Reversibilidad ®		Recuperabilidad (RE)			
Corto Plazo	1	Recuperable	2		
Medio Plazo	2	Mitigable	4		
Irreversible	4	Irrecuperable	8		
Acumulación (AC)		Relación causa-efecto (RCE)			
Simple	1	Indirecto	1		
Acumulativo	4	Directo	4		
Periodicidad Regularidad de manifestación (RM)		Permanencia del efecto (PE)			
Descontinuo	1	Fugaz	1		
Periódico	2	Temporal	2		
Continuo	4	Permanente	4		

Actividad 6. Verificación de límites máximos permisibles

Se verificaron que los análisis se encuentren dentro de los límites máximos permisibles establecidos en la normativa ecuatoriana, tomándose como referencia las tablas Nº 1,9,12, del libro VI, Anexo I del (TULSMA, 2015), a excepción de la conductividad eléctrica, que se tomó como referencia el Anexo II de la normativa peruana (SUNASS, 2021) puesto que la normativa ecuatoriana no cuenta con una estimación respecto a dicho parámetro, tal como se presenta en el tabla 3.4.

Tabla 3.4. Normativa ambiental ecuatoriana

		Normativa Ambiental Aplicada						
Límite	Límites Máximos Permisibles según el TULSMA, y límites Máximos permisibles SUNASS							
Parámetro	Unidad de medida	Criterio		Referencia				
рН	-	Límite de descarga a un cuerpo de agua dulce	6,5 – 8,5	Tabla #9				
Conductividad Eléctrica	uS/cm	Parámetros de calidad organoléptica (Perú)	Máximo 1500	Anexo II Eco fluidos				
Temperatura	°C	Límites de descarga a un cuerpo de agua dulce	Condición natural ± 3	Tabla #1				
SST	mg/l	Límites de descarga a un cuerpo de agua dulce	100	Tabla #12				
TDS	mg/l	Límites de descarga a un cuerpo de agua dulce	1600	Tabla #12				
Turbidez	UNT	Límites máximos permisibles para aguas de consumo humano y uso doméstico, que únicamente requieren tratamiento convencional.	100	Tabla #1				
Aceites y Grasas	mg/l	Criterios de calidad para aguas destinadas para fines recreativos	0.3	Tabla #12				
DBO ₅	mg/l	Límites de descarga a un cuerpo de agua dulce	100	Tabla #12				
DQO	mg/l	Límites de descarga a un cuerpo de agua dulce	250	Tabla #12				

3.5.3. FASE III. PROPONER MEDIDAS DE MITIGACIÓN DE LOS PASIVOS AMBIENTALES SIGNIFICATIVOS

Actividad 7. Elaboración de propuestas

Se elaboraron propuestas de mitigación para la recuperación de las zonas afectadas por los pasivos ambientales, acorde a la metodología aplicada por Arteaga y García (2021), en los que se consideró la ubicación, valoración del pasivo, tipo de medida, objetivo, externalidad o impacto a mitigar, el plazo de ejecución para la estrategia, responsable y el costo de la misma; tal como se muestra en la tabla 3.5.

Tabla 3.5. Modelo de la propuesta de mitigación de pasivos ambientales

Medidas de mitigación					
Pasivo ambiental					
Ubicación					
Valoración de Pasivo Ambiental					
Tipo de medida					
Objetivo					
Externalidad o Impacto	Estrategia				
Plazo de ejecución					
Responsable					
Costo					

CAPÍTULO IV. RESULTADOS Y DISCUSIÓN

4.1. ESTABLECIMENTO DE LOS ASPECTOS E IMPACTOS NEGATIVOS ASOCIADOS A PASIVOS AMBIENTALES GENERADOS POR ACTIVIDADES DE EXTRACCIÓN DE ACEITE EN EL RÍO CUCARACHA CANTÓN LA CONCORDIA

De los 2 recorridos realizados en las orillas del río Cucaracha se identificaron 3 pasivos ambientales (figura 4.1) que están relacionados entre sí por presentar filtraciones de efluentes provenientes de las extractoras de aceite hacia el cauce, con la identificación de estos pasivos se determinaron aspectos, impactos ambientales y actividades asociados de extracción de aceite.

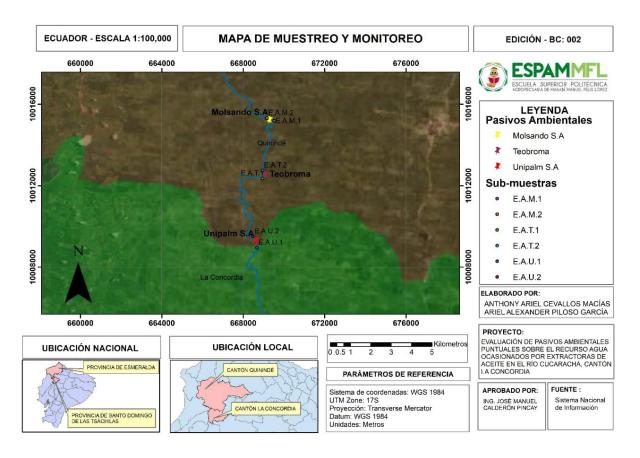


Figura 4.1. Mapa de ubicación de los pasivos ambientales

Algunos de los contaminantes más comunes que se encuentran en el agua son los aceites derivados o no del petróleo, que diariamente se descargan al cauce de diferentes formas; en la mayoría de los casos, los acuíferos, ríos o mares son el destino final de estos aceites; lo que conduce a la devastación no solo de la vida acuática sino también, poniendo en riesgo la salud de la población; ya que esta agua

contaminada no es apta para el consumo humano ni para riego agrícola (Alvarado, Tapia y Encinas, 2021).

La aplicación de las fichas en los recorridos dio como resultado los siguientes datos referentes a los pasivos, aspectos e impactos identificados en el río Cucaracha, la cual se plasma en la tabla 4.1.

Tabla 4.1. Pasivos Ambientales Identificados

Ubicación	Pasivo Ambiental	Aspecto Ambiental asociado al Pasivo	Impacto Ambiental asociado al Pasivo	Actividad antropogénica asociada al pasivo
La Concordia	Extractora Unipalma	Vertido de efluentes	Contaminación del agua y estética	Filtraciones de efluentes al río Cucaracha
La Concordia	Extractora Teobroma	Vertido de efluentes	Contaminación del agua y estética	Filtraciones de efluentes al río Cucaracha
La Concordia	Extractora Molsando S.A.	Vertido de efluentes	Contaminación del agua y estética	Filtraciones de efluentes al río Cucaracha

De acuerdo a la tabla 4.1. se muestran tres pasivos ambientales identificados, los cuales se generan debido a filtraciones de parte de las extractoras confluyendo hacia el cuerpo hídrico en estudio, mostrándose impactos no solo en el agua, sino que también estético para al ecosistema. Actualmente se ha evidenciado el interés de analizar el origen en la relación de la pérdida hídrica de los cauces naturales por parte de pasivos ambientales de origen orgánico e inorgánico, estableciéndose en una primera instancia su identificación y posterior cuantificación, evidenciando que dicho desfase se debe a la falta de conocimiento de conservación de ecosistemas acuáticos y terrestres, por parte de los habitantes que residen en las riberas de los ríos, los mismos que han sobrellevado al aumento indiscriminado de pasivos y han requerido la utilización de los recursos naturales (Guerrero, 2018).

4.2. VALORACIÓN DE LOS PASIVOS AMBIENTALES PUNTUALES GENERADOS EN EL RÍO CUCARACHA CANTÓN LA CONCORDIA

En base a los resultados obtenidos en las fichas de identificación de los pasivos, descritos en el anexo 1, los tres pasivos ambientales tipificados se clasificaron por nivel de criticidad, tal como se indica en la tabla 4.2.

Tabla 4.2. Valor de Importancia de los pasivos ambientales identificados.

Pasivo ambiental	Ubi	cación			Atr	ibuto	s de la	Matriz (de Impoi	rtancia			Valor de IM	Clasificación
	X	Y	3(I)	2(AI)	(PZ)	®	(S)	(AC)	(RM)	(RE)	(RCE)	(PE)		
Extractora de Aceite, Unipalm S. A.	668602	10009256	12	4	2	2	2	4	4	4	4	4	44	Moderado – No críticos
Extractora de Aceite, Teobroma	669056	10012533	12	4	2	2	2	4	2	4	4	4	40	Moderado – No críticos
Extractora de Aceite, Molsando S. A.	669279	10015231	18	4	2	2	2	4	4	4	4	4	48	Moderado – No críticos

Concerniente a la tabla 4.2. los valores obtenidos muestran la importancia de los pasivos ambientales en el río Cucaracha cerca de las extractoras Unipalm S.A., Teobroma y Molsando S.A., donde se registró la ubicación, descripción y los atributos de valoración aplicados en la Matriz de importancia (IM), cuyos resultados permanecen en el rango moderado – no críticos con valores no menores de 25 IM ni mayores a 50 IM.

Una vez obtenido las valoraciones de los pasivos, se verificó que los parámetros fisicoquímicos evaluados en dichos pasivos no excedieran la normativa ambiental considerada; los análisis realizados a las muestras se presentan en la tabla 4.3., en la cual se evidencia que ninguno de los parámetros fisicoquímicos supera los límites

máximos permisibles establecidos en el TULSMA, basado a las descargas de efluentes a cuerpos naturales de agua tabla N°12, a pesar que la principal actividad asociada a los pasivos ambientales es el establecimiento de industrias extractoras de palma; la cual es la principal fuente de aceite vegetal en todo el mundo, con aplicaciones en alimentos, productos químicos, producción de biodiesel y su producción industrial genera una gran cantidad de residuos sólidos y líquidos que afectan los recursos hídricos (Junior *et al.*, 2021).

Tabla 4.3. Resultados de análisis de laboratorio

			Ar	nálisis de labo	ratorio			
Parámetros								
		Lugar de	estudio y Est	tación de mue	estreo (1 y 2)			
Parámetros	Extrac. Unipalm S.A. E.A.U.1.	Extrac. Unipalm S.A. E.A.U.2.	Extrac. Teobroma E.A.U.1.	Extrac. Teobroma E.A.U.2.	Extrac. Molsando S.A. E.A.M.1.	Extrac. Molsando S.A. E.A.M.2.	Límites Máximos Permisibles	Cumplimiento
рН	7,33	7,43	7,46	7,35	7,39	7,33	6,5-8,5	Cumple
Conductividad Eléctrica uS/cm	100	100	0,90	100	110	100	1500	Cumple
Temperatura (°C)	23,3	23,4	23,1	23,5	23,3	23,7	25 ± 3	Cumple
SST (mg/l)	5	17	3	15	4	11	100	Cumple
TDS (mg/l)	64,0	64,0	57,6	64,0	70,4	64,0	1600	Cumple
Turbidez (NTU)	10,85	6,99	6,95	14,32	9,46	15,81	100	Cumple
Aceites y grasas (mg/l)	0.004	0.008	0.002	0.004	0.011	0.015	0.3	Cumple
DBO ₅ (mg/l)	1	1	1	1	3	2	100	Cumple
DQO (mg/l)	11	9	9	8	16	15	250	Cumple

Se evidenció que en los parámetros SST, TDS, Aceites y Grasas, DBO₅ y DQO no superan los límites máximos permisibles establecidos en la normativa; los parámetros Temperatura y Turbidez tampoco exceden los límites máximos permisibles basado en la tabla 1, referente a aguas de consumo humano y uso doméstico, que únicamente

requieren tratamiento convencional, todo esto tomándose como referencia al libro VI anexo I (TULSMA).

Por otro lado, la Conductividad Eléctrica, basado a los límites máximos permisibles establecidos en la normativa de la Superintendencia Nacional de Servicios de Saneamiento (SUNASS), no sobresale los límites máximos permisibles; bajo esta situación, Cevallos (2019) menciona que esta propiedad depende de la presencia de iones, su concentración, movilidad, valencia y la temperatura de medición; si se evidencian cambios bruscos en la Conductividad Eléctrica significa que un cuerpo de agua está siendo contaminado por una descarga directa (Ortega, 2020).

Concerniente a resultados de aceites y grasas en los diferentes puntos de muestreo de pasivos ambientales, se evidenció que al no exceder el límite máximo permisible no reflejan una contaminación alarmante en el cuerpo hídrico, pese a que las extractoras se ubican a pocos metros de la ribera; estos resultados pueden deberse al declive de palma aceitera en el Ecuador, ya que en un estudio realizado por Potter (2011) se comprueba que el rendimiento está en alrededor de 2 toneladas por hectárea en 2009 en comparación con 3,2 toneladas de Colombia y casi 4 toneladas en Costa Rica.

Calvache (2013) menciona que una de las razones de este bajo rendimiento de la palma aceitera es el hecho de que hasta un 40% de los agricultores sigue utilizando cepas viejas de la variedad "Deli dura", la cual produce menos racimos, pero son racimos más pesados si se comparan con los racimos de las tenera y las dura africanas. A pesar de la estrecha base genética, la Deli dura, afortunadamente, es un genotipo distintivamente valioso para el fitomejoramiento y la producción de semillas; ante lo mencionado Potter (2011) comenta que los agricultores expresan su preocupación ante la merma de la producción, ya que tienen que prepararse para volver a plantar una gran parte de sus cultivos con variedades híbridas, sin saber del todo como serán dichos rendimientos.

Para Calvache (2013), otra de las situaciones del bajo rendimiento es el aumento de efectos climáticos, teniendo en cuanta que en el año 2006 se exportó 148.081 Tm de aceite de palma, mientras que para el 2009 llegó a exportar 218.109 sin afectar el consumo ni las necesidades internas del producto, el año 2010 presentó una fuerte disminución en excedente con respecto al -22% con una exportación de 170.461 Tm.

Rivas y Herrera (2015), explican que otro de los escenarios negativos planteados en el cual se direcciona la baja producción de la palma de aceite (*Elaeis guineensis* Jacq.) es el atribuido a la Pudrición de Cogollo (PC), las primeras observaciones de esta enfermedad en Ecuador datan desde 1976, presentándose los primeros casos en la vertiente de la Cordillera del Pacífico, afectando plantas de 3 a 4 años de edad, ya para 1979, la pudrición del cogollo apareció en la vertiente amazónica, atacando a plantas de 2 años de edad.

Ya que las plantaciones se encuentran divididas en cuatro zonas principales; el bloque occidental (La Concordia, Quinindé, Quevedo), San Lorenzo, el Oriente ecuatoriano y la provincia del Guayas, con una superficie para el 2010 de 20 786 ha, la pudrición del cogollo desde el 2006 ha provocado pérdidas de unas 5 000 ha, el 2,41% de la superficie del país, lo cual representa una seria amenaza para las 50 000 ha de palma existentes en San Lorenzo y Eloy Alfaro, y las 170 000 ha de "La Concordia y Quinindé".

Tabla 4.4. Censo INEC al monocultivo de Palma aceitera

	Nacional						
	Superf	icie (Ha)	_				
Año	Plantada	Cosechada	Producción ™	Ventas ™			
2017	313.882	260.292	3.275.993	3.192.320			
2018	267.760	223.962	2.785.756	2.785.756			
2019	246.574	200.908	2.275.948	2.275.580			
2020	256.854	188.469	2.446.312	1.983.890			

Se evidencia una reducción de la superficie de la plantación de palma africana desde el año 2017 hasta el año 2020 de acuerdo al censo realizado por el INEC [Instituto Nacional de Estadísticas y Censo] (2020). Como consecuencia del PC se ha dado la muerte de miles de hectáreas de palma en la zona (anexo 3, foto 8), así que una pequeña fracción de los agricultores de la zona han tomado la decisión de volver a cultivar palma y el resto ha optado por ver otras alternativas de cultivos, datos que coinciden con los expuestos por el Ministerio de Agricultura y Ganadería de Ecuador [MAG] (2021), quienes indican que se ha dado una buena producción del cacao y un

aumento de la superficie de este rubro agrícola, como ha sucedido en los últimos cinco años.

Diego Ferrer, gerente del Proyecto de Reactivación del Café y Cacao del MAG, tiene proyecciones optimistas. Este año están sembradas 631 500 ha; frente a 2020, que fueron 602 000. Estas zonas, que tradicionalmente han sido de cultivos de palma, se han volcado al cacao (anexo 3, foto 7) y a las zonas maiceras de Los Ríos. Por esta razón, el crecimiento ha sido más visible en los últimos años y sobre todo en 2020 y 2021, Francisco Miranda, presidente de la Asociación Nacional de Exportadores de Cacao (Anecaco), comenta que las siembras nuevas se ubican en el norte de Manabí, sur de Esmeraldas y Amazonía.

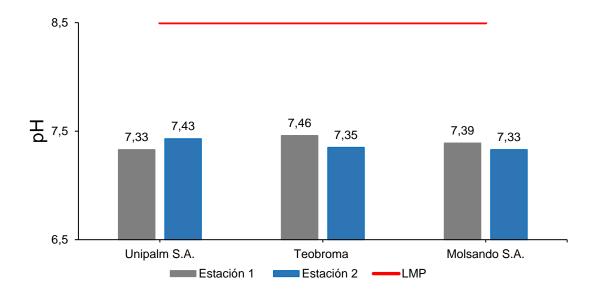


Figura 4.2. Resultados del parámetro pH

Se observa en la figura 4.2., que el parámetro pH no excede los límites máximos permisibles manteniendo un rango entre 7,33 a 7,46, por lo que de acuerdo a Caho y López (2017) en un estudio de la contaminación por aceites y grasas en el humedal Torca-Guaymaral y su correlación con algunos parámetros físico-químicos en el agua, el pH presentó valores entre 7,15 y 7,5 unidades, valor que se relaciona con el obtenido en la presente investigación en el río Cucaracha.

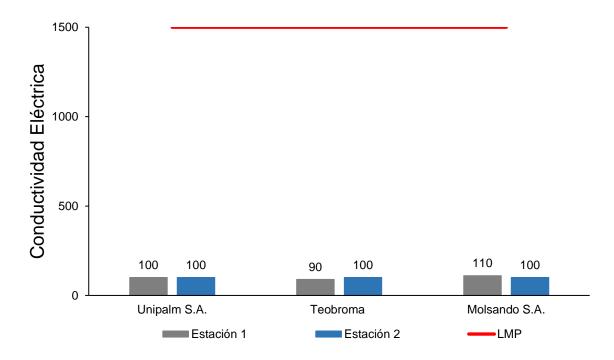


Figura 4.3. Resultados de Conductividad Eléctrica

En la figura 4.3., en los puntos de muestreo la CE no excede los límites máximos permisibles según el SUNASS (2021), lo que se ajusta a lo expuesto por Ruiz (2019), el cual en su investigación sobre evaluación de la calidad fisicoquímica del agua de la quebrada Yanayacu para conservación del ambiente acuático (Shanusi-Perú) no encontró estaciones con valores elevados que excedan la norma, puesto que los resultados de este parámetro en dicha investigación oscilaron entre 27,82 a 28,66 μ S/cm; correspondiendo a los valores promedio de la CE en la mayoría de las aguas dulces naturales, la cual se encuentra entre los 10 μ S/cm a los 350 μ S/cm; cabe destacar que los valores de CE dependen en gran medida del tipo de geología del lugar.

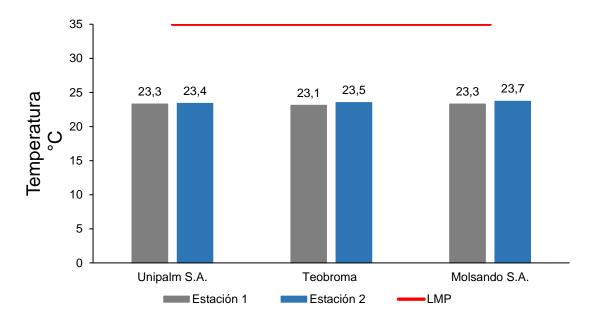


Figura 4.4. Resultados de Temperatura

En la figura 4.4. los valores de temperatura no superan los límites máximos permisibles en ninguna de las estaciones puesto que la media se estimó en 23,4°C; situación similar a la descrita por (Cheme, 2020) en cuyo estudio de la evaluación de la calidad del agua del estero Salado en Guayaquil, el resultado de la temperatura fue de 24°C muy por debajo del límite, esto debido a la existencia de factores como la época del año, las descargas de aguas industriales y domésticas.

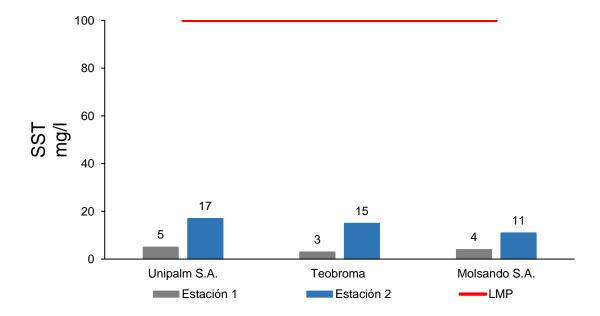


Figura 4.5. Resultados De Sólidos Suspendidos Totales

Los resultados de SST no superan los límites máximos permisibles en ninguno de los puntos de los muestreos. Estos valores muestran que en la segunda estación de cada punto presentan valores superiores que en el primero y aunque la descarga no es significativa se observa una variabilidad de SST, donde el valor mínimo es de 3 mg/l en lo que respecta antes de la descarga y un valor máximo de 17 mg/l después de la descarga. Según Ruiz (2017) es importante monitorear sólidos suspendidos totales puesto que los SST en concentraciones considerables, disminuyen la cantidad de luz que penetra en la columna de agua, con lo que se suprime la actividad fotosintética del fitoplancton, las algas y los micrófitos.

Figura 4.6. Resultados de Sólidos Disueltos Totales

En la figura 4.6. se observa que los valores de los TDS no exceden los límites máximos permisibles, concerniente a esto, Chiquín y Troya (2013) en un estudio realizado en el levantamiento de la línea base ambiental del bosque protector "La Perla", evidenciaron que los valores de TDS de los distintos ríos fluctúan entre 22 mg/l y 110 mg/l, mostrando valores aceptables según el TULSMA, por lo que sus resultados son similares a los obtenidos en esta investigación.

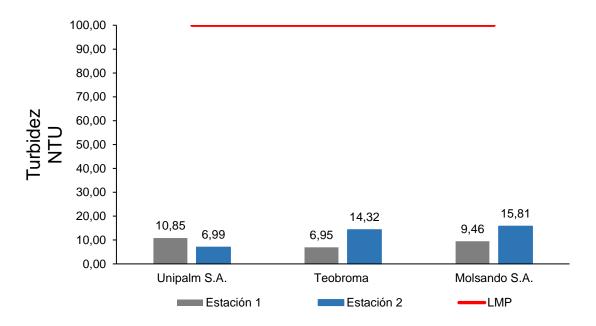


Figura 4.7. Resultados de Turbidez

Se aprecia en la figura 4.7. que los valores de la Turbidez no exceden los límites máximos permisibles, de acuerdo con Cheme (2020) la turbidez influye en el paso de la luz a través del agua y su aglomeración se debe a la disposición de sólidos suspendidos, cuando este parámetro aumenta impide que la luz pueda atravesar el agua y estimula al crecimiento de microorganismos.

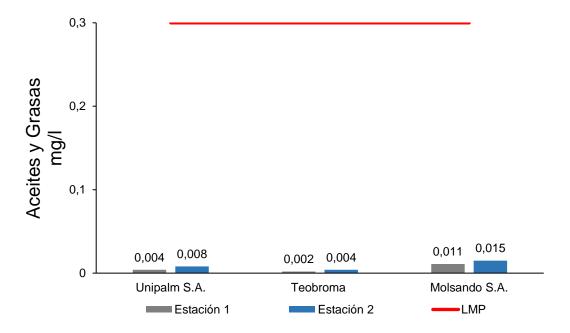


Figura 4.8. Resultados de Aceites y Grasas

Se aprecia en la figura 4.8. que los valores de Aceites y Grasas no exceden los límites máximos permisibles en ninguna de la estaciones según el TULSMA; Cheme (2020) manifiesta que los Aceites y Grasas se encuentran en estado libre, ya que pueden ser de origen vegetal (plantas oleaginosa), animal o mineral, en este último grupo se encuentra especialmente como derivados de descargas de industrias o petróleo; Ruiz (2017) por su parte indica que al ser inmiscibles con el agua, van a permanecer en la superficie dando lugar a la aparición de natas y espumas, su efecto en las aguas naturales se debe a su interferencia en el intercambio de gases entre el agua y la atmósfera.

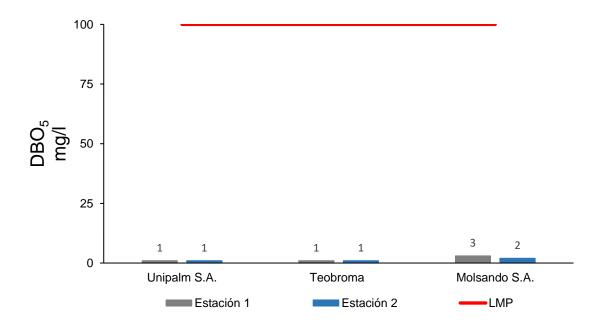


Figura 4.9. Resultados de Demanda Bioquímica de Oxígeno

En la figura 4.9. los valores de DBO₅ no superan los límites máximos permisibles en ninguna de las estaciones; (Sardiñas, Chiroles, Fernández, Hernández, & Pérez, 2006) enfatizan que la DBO₅ es una medida de la cantidad de oxígeno que necesitan los microorganismos para descomponer la materia orgánica en el agua, ya que un cuerpo de agua con niveles de DBO por encima de 100 mg/l está muy contaminado; mientras que en un estudio preliminar de la calidad del agua en tres puntos de la quebrada "La Palmara" en Cundinamarca contaminado por aceites y grasas, hidrocarburos y detergentes realizado por (Rodríguez & Díaz, 2017) se evidenció que los resultados fueron de <11 mg/l de DBO₅, dichos valores son similares los resultados obtenidos en el río Cucaracha, evidenciando en ambos casos una contaminación difusa.

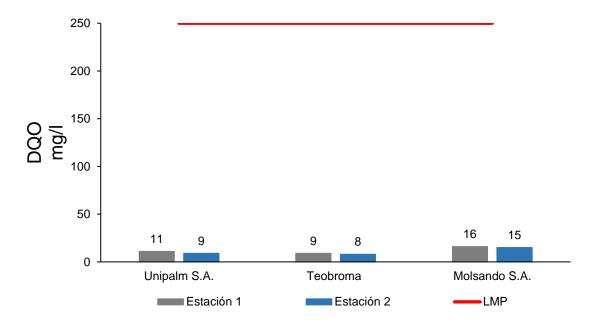


Figura 4.10. Resultados de Demanda Química de Oxígeno

La DQO es la cantidad de oxígeno necesaria para oxidar la materia orgánica por medios químicos y convertirla en CO₂ y H₂O, cuanto mayor es la DQO, más contaminada está el agua (LaboMersa, 2021), por lo que este parámetro se relaciona con la oxidación, la cual se produce por la presencia de oxígeno en el agua, siendo muy difícil de evitar a menos que la superficie se encuentre obstruida por natas o capas oleaginosas (Tena, Lobo, Aparicio, & García, 2018).

Es conocido que las grasas y aceites tienen tendencia a flotar, debido a que su densidad es inferior a la del agua, lo que genera capas en la superficie, dificultando la transferencia de oxígeno (iAgua, 2021) situación que impide la oxidación completa de la muestra, de manera que todo el material orgánico, biodegradable y no biodegradable, no sea químicamente oxidado; por lo tanto, los valores de DQO en esta investigación están por debajo del límite máximo permisible, al igual que con la cantidad de aceites y grasas encontradas en los sitios de muestreo.

Por otro lado, de acuerdo a la investigación realizada por Velazco *et al.*, (2015) en las industrias que presentan modificaciones adaptativas por procesos naturales, la carga productiva y residual se reduce, constituyéndose en una ventaja de tipo ambiental al minimizar los impactos sobre el medioambiente, reduciendo las corrientes residuales generadas y su carga contaminante hacia cuerpos receptores, lo cual se relaciona con la presente investigación debido a los bajos niveles de producción que presentan las

extractoras, lo que conlleva a menorar el uso de materias primas y a su vez, la poca generación de aguas residuales.

4.3. PROPUESTA DE MEDIDAS DE MITIGACIÓN DE LOS PASIVOS AMBIENTALES SIGNIFICATIVOS

La valoración, la prevención y mitigación de los riesgos de los pasivos ambientales encontrados se establecieron medidas de mitigación basadas en Medina, López, y López, (2017).

Tabla 4.5. Medidas de mitigación al pasivo ambiental Unipal S.A.

Medidas de mitigación				
Pasivo ambiental	Efluente de extractora Unipal S.A.			
Ubicación	extractora Unipal S.A.			
Valoración de Pasivo Ambiental	Moderado no crítico			
Tipo de medida	Mitigación			
Objetivo	Minimizar la permanencia del pasivo ambiental generado por las actividades de extracción de aceite			
Externalidad o Impacto	Estrategia			
Vertido efluentes aceitosos proveniente de actividades de palma	Empleo de material adsorbente natural (bioadsorbente) (cascarilla de arroz, hoja de choclo, corteza de naranja) en proceso de coagulación-floculación (Guilcamaigua et al, 2021)			
Plazo de ejecución	3 meses			
Responsable	Extractoras			
Costo	200\$			

El empleo de materiales adsorbentes de diverso origen, por ejemplo, el ladrillo triturado ha demostrado tener una eficiencia alta (superior al 95%) como material filtrante en la reducción de parámetros importantes (DBO5, DQO, Aceites y grasas); asimismo la utilización de la cáscara de coco como carbón activado es uno de los medios absorbentes más eficaces debido a su excelente porosidad que le confiere la propiedad de retener contaminantes de diferentes compuestos ya sean orgánicos e inorgánicos (Maldonado, 2020), más sin embargo, el empleo continuo de materiales vegetales como la cascarilla de arroz y otros elementos combinados como cáscaras de frutas y vegetales ha evidenciado ser altamente eficiente en la remoción de la DBO5, DQO y las grasas y aceites, obteniendo eficiencias entre el 85 al 99,75% (Sánchez, 2017; Urrelo y Troya, 2020)

Tabla 4.6. Medidas de mitigación, pasivo ambiental Teobroma

Medidas de mitigación				
Pasivo ambiental	Efluente de extractora Teobroma			
Ubicación	Orillas del río Cucaracha			
Valoración de Pasivo Ambiental	Moderado no crítico			
Tipo de medida	Mitigación			
Objetivo	Minimizar la permanencia del pasivo ambiental generado por las actividades de extracción de aceite			
Externalidad o Impacto	Estrategia			
Vertido efluentes aceitosos proveniente de actividades de palma	Empleo de hongos lipolíticos (Penicilium sp, Aspergilus sp. y Amorphoteca sp.) para degradación de aguas aceitosas (Moya y Moya 2018).			
Plazo de ejecución	6 meses			
Responsable	Extractoras			
Costo	500\$			

El empleo de *Aspergilus niger* ha evidenciado en los ensayos en industrias, las menores concentraciones residuales de grasa en promedio (6,23 mg/L) que representa el mayor porcentaje de remoción de aceites y grasas con 73.92% promedio a las 336 h de evaluación a un pH promedio de 7,73 con una actividad enzimática lipolítica relativa promedio de 669,55% (Medina S. , 2021). Por otro lado, la investigación de (Goméz y Sánchez, 2020) ha demostrado que las cepas de *Penicillium* y *Aspergillus* han logrado alcanzar eficiencias superiores al 90% en la remoción de aceites y grasas de aguas industriales; he ahí la principal razón de porque usarlas como estrategia de remoción.

Tabla 4.7 pasivo ambiental Molsando S.A.

Medidas de mitigación					
Pasivo ambiental	Efluente de extractora Molsando S.A.				
Ubicación	Orillas del cauce Cucaracha				
Valoración de Pasivo Ambiental	Moderado no crítico				
Tipo de medida	Mitigación				
Objetivo	Minimizar la permanencia del pasivo ambiental generado por las actividades de extracción de aceite				
Externalidad o Impacto	Estrategia				
Vertido efluentes aceitosos proveniente de actividades de palma	Empleo de un biofiltro a base de lechuguín (Eichhornia crassipes) y lenteja de agua (Lemma minor), para remoción de aceites y grasas (Sarango y Sánchez, 2016).				
Plazo de ejecución	6 meses				

Responsable	Extractoras
Costo	500\$

El tratamiento de aguas residuales domésticas, mediante el uso de los macrofitos de la especie *Eichhornia crassipes* ha demostrado tener una alta eficiencia en la remoción de los parámetros químicos de aguas industriales tales como aceites y grasas, DQO, DBO y SST superiores al 90% (Vergara, 2021). Se ha comprobado que la aplicación de técnicas de fitorremediación como la fitotransformación utilizando a la especie *Eichhornia crassipes*, son muy efectivas en la industria, logrando remover un alto porcentaje de parámetros como pH, DQO, coliformes totales y fecales, DBO soluble, SST y aceites y grasas (Cortés, 2021).

El principio de responsabilidad ambiental señala que el causante de la degradación del ambiente y de sus componentes, sea una persona natural o jurídica, pública o privada, está obligado a adoptar inexcusablemente las medidas para su restauración, rehabilitación o reparación según corresponda (UPN [Universidad Privada del Norte], 2015). Una empresa que causa daño al medio ambiente, la responsabilidad de la contaminación es clara, tanto en lo jurídico como en términos económicos, ya que la empresa contaminadora tendrá que asumir los costos de mitigación y remediación de las áreas alteradas, así como la compensación a las víctimas por los daños irreversibles (Sotomayor, 2015).

CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

- El aspecto e impacto ambiental asociado a los pasivos ambientales en general
 fue el filtrado de residuales aceitosas provenientes del mal manejo de desechos
 de la actividad industrial aceitera, identificándose 3 pasivos ambientales en la
 ribera del río Cucaracha correspondiente a las extractoras Unipal S.A.,
 Teobroma y Molsando S.A.; alterando la calidad del agua principalmente con
 películas aceitosas visibles a simple vista.
- La valoración de los pasivos ambientales fue de 44 IM para el pasivo Unipal S.A.; 40 IM correspondiente a Teobroma y 48 IM para Molsando S.A.; manteniéndose los 3 pasivos ambientales en el rango moderado no crítico. A pesar de las filtraciones los análisis fisicoquímicos manteniéndose dentro de los rangos máximos permisible de acuerdo a la normativa legal vigente.
- Se establecieron 3 medidas de mitigación, una por cada pasivo, las cuales se enfocan con estrategias de biorremediación con procesos biológicos, orientados a la degradación de aceites y grasas.

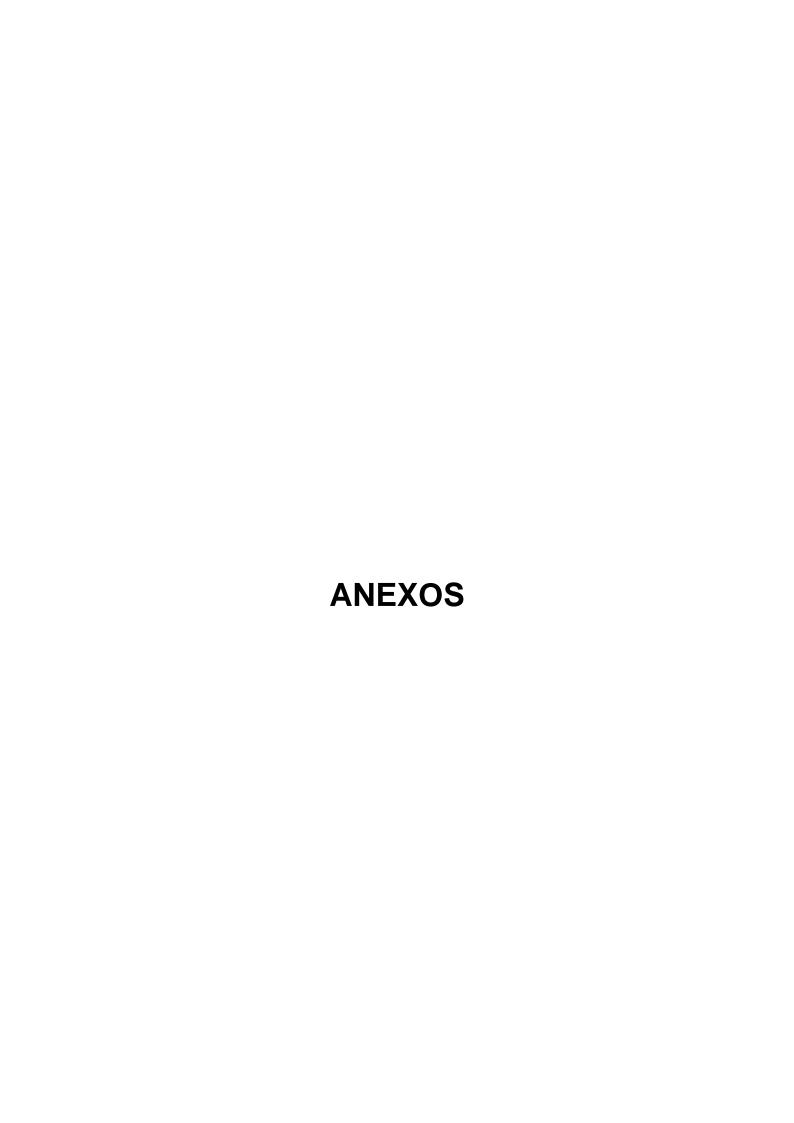
5.2. RECOMENDACIONES

- Ampliar el rango de identificación de pasivos ambientales a lo largo del río Cucaracha contemplando su cauce hasta su unión con el río Mache en el cantón Quinindé.
- Monitorear la calidad fisicoquímica del río Cucaracha por época (seca y lluviosa), para la determinación de la variabilidad en su ponderación en la matriz de importancia.
- A las autoridades ambientales competentes efectuar el seguimiento y verificación del cumplimiento al sistema de gestión ambiental establecido de acuerdo a las normativas correspondientes y poner mayor énfasis en la aplicación de medidas de mitigación de las extractoras que actualmente están generando pasivos ambientales, para tratar sus residuos en cada uno de sus procesos y dando una adecuada disposición final de los mismos.

BIBLIOGRAFÍA

- Agustin, R., y Albuquerque, J. (2018). Impactos socioambientales del cultivo de palma africana: los casos Mexicano y Brasileño. *Scielo*, 23-53.
- Alvarado, E., Tapia, J., y Encinas, A. (2021). A sustainable hydrophobic luffa sponge for efficient removal of oils from water. *Sustainable Materials and Technologies*, 28. doi:https://doi.org/10.1016/j.susmat.2021.e00273
- Arellano, J. (2017). Análisis comparativo de los impactos ambientales entre proyectos sobre extractoras de palma Africana. Ecuador: Revista de Ciencias de Seguridad y Defensa.
- Arteaga, F., y García, R. (2021). Evaluación de pasivos ambientales puntuames sobre el recurso agua ocasionados por activiades antropogénicas en la subcuenca baja del río carrizal. Calceta: ESPAM MFL.
- Arteaga, G. (2019). Las actividades antropogénicas y la calidad del agua del río Jipijapa, Manabí, Ecuador. Jipijapa: Repositorio Espam.
- Caho, C., y López, E. (2017). Determinación del Índice de Calidad de Agua para el sector occidental del humedal Torca-Guaymaral empleando las metodologías UWQI y CWQI. *Scielo*, 35-49.
- Calderón, C., y Orellana, V. (2015). Control de calidad de agua potable que se distribuye en los campus: central, hospitalidad, balzay, paraiso, yanuncay y las granjas de irquis y romeral. cuenca: Universidad de Cuenca.
- Calvache, M. (2013). La competitividad del aceite de palma africana ecuatoriano en el mercado internacional. Periódo 2006-2010. Quito: Pontificia Universidad Católica del Ecuador.
- Camacho, J. (2016). Analisis de la contaminacion del rio cucaracha en el bosque protector La Perla, La Concordia . Santo Domingo : UTE (Universidad Tecnologica Equino).
- Castellanos, L. (25 de Junio de 2021). *Metodología de la Investigación*. Obtenido de Técnica de la Observación: https://lcmetodologiainvestigacion.wordpress.com/2017/03/02/tecnica-de-observacion/
- Cevallos, M. (2019). Evaluación de la variables físicas en el agua del humedal la segua Chone en periodo seco y lluvioso. Calceta: Espam .
- Cheme, A. (2020). Evaluación de la calidad del agua del Estero Salado Zona "Puente Gómez Rendón" en Guayaquil durante los años 2017 y 2020. Guayaquil: Universidad de Guayaquil.
- Chiquín, N., y Troya, M. (2013). Levantamiento de la línea base ambiental del Bosque Protector "La Perla", ubicado en la Provincia de Santo Domingo de los

- Tsáchilas, Cantón La Concordia, para la propuesta del plan de manejo ambiental. Ecuador: Espe.
- Coorporativo Quimico Global. (20 de 12 de 2010). Obtenido de https://quimicoglobal.mx/que-es-una-reaccion-quimica/
- Cortés, D. (2021). Eichhornia crassipes y su uso en técnicas de aprovechamiento y fitorremediación de cuerpos de agua. Bogotá: Universidad Nacional Abierta y a Distancia de Colombia.
- De la Torre, K. (05 de 02 de 2020). *Lexlatin*. Obtenido de Lexlatin: https://lexlatin.com/reportajes/importancia-prestar-atencion-pasivos-ambientales
- Enriquez, J. (2018). Caracterización de pasivos ambientales mineros en la microcuenca de la quebrada Campanas de la parroquia San Carlos de las Minas. Loja: Universidad Nacional de Loja.
- Flores, F., y Pinargote, Z. (2019). Evaluación de los pasivos ambientales puntuales sobre el recurso agua natrual, de la subcuenca media del río Carrizal. Calceta: Repositorio Espam.
- García, C., García, M., y Aguledo, C. (2014). Evaluación y diagnóstico de pasivos ambientales mineros en la canteravilla gloria en la localidad de ciudad Bolivar, D.C. *Tecnura*, 90-102.
- García, L. (30 de 06 de 2015). *El Financiero* . Obtenido de https://www.elfinanciero.com.mx/opinion/salvador-garcia-linan/contaminacion-industrial/
- Goméz, N., y Sánchez, T. (2020). Revisión de eficiencia de hongos ligninolíticos en la biodegradación y adsorción de los metales pesados en aguas residuales textiles. Tarapoto: Universidad Peruana Unión.
- Gonzalez, H. (30 de 07 de 2017). Aspectos e impactos ambientales significativos. Obtenido de https://calidadgestion.wordpress.com/tag/aspectos-e-impactos-ambientales-significativos/
- Guerrero, J. (2018). Determinación de pasivos ambientales en las riberas del río Puca del cantón Olmedo. Jipijapa: Repositorio UNESUM.
- Guevara, A. (2016). Esquema metodológico para el diseño e implementación de un sistema de información geográfico . *Dialnet* , 21-32.
- Guilcamaigua, D., Quintero, N., Jiménez, M., y Muñoz, D. (2021). Absorción de aceites y grasas en aguas residuales de lavadoras y lubricadoras de vehículos utilizando absorbentes naturales. *3C Tecnología*, 13-23.
- iAgua. (13 de Diciembre de 2021). *iAgua*. Obtenido de La importancia de la separación de aceites y grasas en el tratamiento del agua residual urbana: https://www.iagua.es/noticias/teqma/importancia-separacion-aceites-y-grasas-tratamiento-agua-residual-urbana


- INEC [Instituto Nacional de Estadísticas y Censo]. (Mayo de 2020). Encuesta de Superficie y Producción Agropecuaria Continua 2020. Obtenido de https://www.ecuadorencifras.gob.ec/documentos/webinec/Estadisticas_agropecuarias/espac/espac-2020/Presentacion%20ESPAC%202020.pdf
- Instituto de Hidrología, Meteorología y Estudios Ambientales [IDEAM]. (2007). Obtenido de Subdirección de hidrología grupo laboratorio de calidad ambiental : http://www.ideam.gov.co/documents/14691/38155/Demanda+Qu%C3%ADmic a+de+Ox%C3%ADgeno..pdf/20030922-4f81-4e8f-841c-c124b9ab5adb
- Instituto Ecuatoriano de Normalización [INEN]. (2013). *Norma Técnica Ecuatoriana NTE INEN 2169*. Quito-Ecuador : Gestion ambiental .
- Instituto Nacional de Tecnología Agropecuaria de Argentina. (2011). Protocolo de Muestreo, Transporte y Conservación de Muestras de Agua con Fines Múltiples (consumo humano, abrevado animal y riego). Buenos Aires: Ministerio de Agricultura, Ganadería y Pesca de Argentina.
- Junior, L., Woiciechwski, A., Pedroni, A., Rodrigues, C., de Carvalho, J., de Souza, L., . . . Cavali, M. (2021). Valorización de residuos sólidos y líquidos de la industria del aceite de palma. *Biorrefinería de Residuos*, 235-265. doi:https://doi.org/10.1016/B978-0-12-821879-2.00009-0
- LaboMersa. (13 de Diciembre de 2021). LaboMersa. Obtenido de ¿Por qué es importante DQO (Demanda Química de Oxígeno) y DBO (Demanda Biológica de Oxígeno) en análisis de aguas?: https://labomersa.com/2021/09/14/por-que-es-importante-dqo-demanda-quimica-de-oxigeno-y-dbo-demanda-biologica-de-oxigeno-en-analisis-de-aguas/
- Lacfuerte. (2010). *Universidad Politécnica de Cartagena* . Obtenido de https://www.upct.es/~minaeees/analisis_aguas.pdf
- Lalaleo, T. (2021). Análisis de la influencia de la actividad palmicultora en el desarrollo sostenible del cantón Muisne, Esmeraldas. Esmeraldas: Pontificia Universidad Católica del Ecuador.
- Lecca, E., y Lizama, E. (2014). Caracterización de las aguas residuales y la demanda bioquímica de oxígeno. *Redalyc*, 71-80.
- López, L., López, M., y Medina, G. (2017). The prevention and mitigation of the risks of mining environmental liabilities (MEL) in Colombia. *Redalyc*, 78-91.
- MAE. (2015). Ministerio del Ambiente actua frente a contaminación en río La Perla. Ecuador.
- MAE. (2016). Comité de la calidad del agua interviene en Santo Domingo. Santo Domingo de los Tsáchilas: Ministerio del ambiente y agua .
- MAG [Ministerio de Agricultura y Ganadería]. (15 de Noviembre de 2021). La superficie y la producción de cacao subieron en ocho meses. Obtenido de

- https://www.revistalideres.ec/lideres/superficie-produccion-cacao-ecuador-incremento.html
- Maldonado, D. (2020). Diseño de un filtro de carbón activado a base de estopa de coco (Cocos nucifera L) para la eliminación de aceites y grasas en aguas residuales avícolas. Guayaquil: Universidad Agraria del Ecuador.
- Medina, G., López, M., y López, L. (2017). La prevención y mitigación de los riesgos de los pasivos ambientales mineros (PAM) en Colombia. *Ciencias Sociales Aplicadas*, 78-91.
- Medina, S. (2021). Biodegradación de aceites y grasas del remojo de curtiduría del parque industrial de Río Seco Arequipa (PIRS) mediante cepas fúngicas lipolíticas. Arequipa: Universidad Nacional de San Agustín de Arequipa.
- Melo, R. (2011). Evaluación de un pasivo ambiental metalúrgico . San Luis Potosí México : Repositorio UASLP .
- Ministerio para la Transición Ecológica y el Reto Demográfico [MITECO]. (2019). Viceprecidencia Ministerio para la Transición Ecológica y el Reto Demográfico.

 Obtenido de https://www.google.com/search?q=MITECO&rlz=1C1AWFC_enEC826EC826 &oq=MITECO+&aqs=chrome..69i57j0l4j69i60l3.2034j0j7&sourceid=chrome&i e=UTF-8
- Moya, M., y Moya, J. (2018). Biodegración de residuos de aceite usado de cocina por hongos liopolítico. *Rev. Int. Contam. Ambie*, 352-359.
- Narváez, E. (2015). Estudio sobre la recirculación de agua de producción utilizada para la extracción del aceite crudo de palma. Quito: Universidad San Fransico de Quito.
- Nevárez, J., Moreira, M., Romero, J., Wong, S., Zambrano, D., y Boza, J. (2016). Efecto en el sistema ambiental producidos por las empresas ambientales en el cantón Santo Domingo, Ecudor. Santo Domingo, Ecuador: Revista eumednet
- Ochoa, M. (2009). *Tesis* . Obtenido de http://repositorio.utn.edu.ec/bitstream/123456789/219/2/03%20REC%20117% 20TESIS%20DOCUMENTO.pdf
- Ortega, S. (2020). Creación de línea base de análisis de aguas naturales, con uso recreacional en parque nacional huerquehue. Chile: Universidad Técnica Federico Santa María.
- Pantoja, R., y Villanueva, M. (2012). Impactos antropogénicos en la calidad del agua del río Cunas. *Universidad nacional del centro del Perú*, 130-137.
- Peña, M. (2013). Identificación de pasivos ambientales y propuesta metodológica de remediación de piscinas api en el campo pindo, operado por el consorcio petrosud petroriva. Quito: Universidad Central del Ecuador.

- Perevochtchikova, M. (2013). La evaluación del impacto ambiental y la importancia de los indicadores ambientales . *Scielo* , 283-312.
- Pérez, M., Espinoza, C., y Peralta, B. (2016). La responsabilidad social empresarial y su enfoque ambiental: Una visión sostenible a futuro. *Revista Universidad y Sociedad, 8*(3), 169-178.
- Potter, L. (2013). La Industria Del Aceite De Palma En Ecuador: ¿un Buen Negocio Para Los Pequeños Agricultores?. *Flacso*, 39-54.
- Rivas, F., y Herrera, I. (2015). La pudrición del cogollo de la palma aceitera en San Lorenzo, provincia de Esmeraldas, Ecuador. Riobamba : ESPOCH .
- Rodrigez, P. (2009). Extracción de almidón de yuca. Manejo integral y control de la contaminación hídrica. Colombia: http://www.lrrd.org/lrrd17/7/torr17074.htm.
- Rodríguez, E., y Díaz, R. (2017). Estudio preliminar de la calidad del agua en tres puntos de la quenrada "La Palmara" y la presencia de contaminantes: Aceites, grasas, Hidrocarburosy Detergentes en la Bocatoma (Melgar-Tolima 2017). Cundinamarca: Universidad de Cundinamarca.
- Rodríguez, J. (2009). Parámetros fisicoquímicos de dureza total en calcio y magnesio, pH, conductividad y temperatura del agua potable, analizados en conjunto con las Asociaciones Administradoras del Acueducto, (ASADAS), de cada distrito de Grecia. *Dialnet*, 125-134.
- Romero, A. (2010). Contaminación ambiental y calentamiento global. México: Trillas Sa De Cv.
- Ruiz, A. (2019). Evaluación de la calidad fisicoquímica del agua de la quebrada Yanayacu para conservación del ambiente acuático, valle del Shanusi. Tarapoto-Perú: Universidad Peruana Unión.
- Ruiz, D. (2017). Método de Estimación de Sólidos Suspendidos Totales como Indicador de la Calidad del Agua Mediante Imágenes Satelitales. Bogota - Colombia: Universidad Nacional de Colombia.
- Russi, D., y Martínez, J. (2002). Los pasivos ambientales. *Redalyc*, 123-131.
- Sánchez, A. (2017). Análisis de la cascarilla de arroz utilizada como filtro en el tratamiento de aguas residuales provenientes de lavadoras y lubricadoras de autos "Polito's" ubicada en el cantón tisaleo de la provincia de Tungurahua. Ambato: Universidad Técnica de Ambato.
- Sarango, O., y Sánchez, J. (2016). *Diseño y construcción de 2 biofiltros con Eichhornia crassipes* Y *Lemna minor* . Riobamba : Escuela Superior Politécnica de Chimborazo .
- Sardiñas, O., Chiroles, S., Fernández, M., Hernández, Y., y Pérez, A. (2006). Evaluación físico-química y microbiológica del agua de la presa El Cacao (Cotorro, Cuba). *Higiene y Sanidad Ambiental, 6*, 202-206.

- Sotomayor, A. (2015). Remediación de Pasivos Ambientales Mineros. Consorcio de Universidades "Metas del Perú al Bicentenario". Obtenido de http://www.metasbicentenario.consorcio.edu.pe/wp-content/uploads/2015/07/Documento-Completo-Consorcio-Universidad-A.-Sotomayor.pdf
- Superintendencia Nacional de Servicios y Saneamiento . (2019). *Parámetros de calidad y límites máximos permisibles .* Lima: Ministerio del Ambiente Perú.
- Tamayo, S., & Esquivel, E. (Sep-Dic de 2014). El desarrollo industrial y su impacto en el medio ambiente. *Cubana de Higiene Epidemilogía, 52*(3).
- Tena, N., Lobo, A., Aparicio, R., & García, D. (2018). Storage and Preservation of Fats and Oils. *Módulo de Referencia en Ciencias de los Alimentos*. doi:doi:10.1016/b978-0-08-100596-5.22268-3
- Texto Unificado de Legislación Secundaria del Ministerio del Ambiente. (2015). Ecuador: Constitución de la Republica del Ecuador. Obtenido de http://extwprlegs1.fao.org/docs/pdf/ecu112180.pdf
- Toapanda, M., & Chang, J. (2009). *Calidad de agua grasas y aceites .* Guayaquil : Espol .
- Toasa, F. (2012). Validación de los métodos y ensayos para fenoles, tensoactivos, sólidos supendidos y total de sólidos disueltos. Quito: Universidad Central del Ecuador.
- UPN. (2015). ¡Un llamado a la remediación! Avances y pendientes en la gestión estatal frente a los pasivos ambientales mineros e hidrocarburíferos. *Universidad Privada del Norte*. Obtenido de https://repositorio.upn.edu.pe/handle/11537/24516
- Urrelo, L., & Troya, D. (2020). Filtros de cáscara de coco y cascarilla de arroz, una revisión en el tratamiento de aguas residuales de lavaderos de vehículos. Tarapoto: Universidad Peruana Unión.
- Velazco, P., Ríos, L., Zorrilla, M., Moya, F., Hernández, O., & Moreno, L. (2015). Evaluación y acciones de producción más limpia en taller galvánico de la provincia de Villa Clara. Revisto Centro Azúcar, 42(4), 1-13. Obtenido de http://scielo.sld.cu/pdf/caz/v42n4/caz01415.pdf
- Vergara, R. (2021). Diseño de biofiltros para mejorar el manejo de aguas residuales domésticas. Cajamarca: Universidad Privada del Norte de Perú.
- Zita, A. (2019). *Toda Materia*. Obtenido de https://www.todamateria.com/impacto-ambiental/
- Zuñiga, M. (2003). Los sistemas de información geográfica y su aplicación en enlaces de comunicaciones. Obtenido de http://www.redalyc.org/pdf/614/61412184005.pdf

ANEXO 1. FICHAS PARA PASIVO AMBIENTAL APLICADAS

FICHA DE REGISTRO PASIVO AMBIENTAL EN EL RÍO CUCARACHA CANTÓN LA CONCORDIA

TRAMO

Pasivo ambiental Unipalm S.A.

CARACTERIZACIÓN DEL PASIVO AMBIENTAL

UBICACIÓN	U	TM:	LADO			
El pasivo se encuentra ubicado a pocos metros de la extractora, confluyendo hacía el cuerpo hídrico	X 668602	Y 10009256	Derecho			

DESCRIPCIÓN DEL PASIVO AMBIENTAL

El pasivo corresponde a una filtración de una poza de oxidación aceitoso (aguas residuales de los procesos de extracción de aceite), es un fluido de contaminación permanente ya que la producción de la extracción de aceite se da en todo el año, por lo que se libera río Cucaracha.

CATEGORIA		CAUSA				
ECOLOGÍA						
CONTAMINACIÓN AMBIENTAL	Х	Established a coita I lainalma				
ASPECTO ESTÉTICO		Extracción de aceite Unipalma				
ASPECTO DE INTERES HUMANO						

TIPO DE PASIVO AMBIENTAL											
DESLIZAMIENTO O DERRUMBE					DAÑ	DAÑOS ECOLOGICOS Y PASAJISTAS					
CONTAMINACIÓ	N DE A	AGUAS		Х		DAÑOS A LAS FUENTES DE AGUA A					Х
ACCESO O POBL		6				POBLADOS BOTADEROS LATERALES INDISCRIMINADOS					
EROSIÓN Y SED		TACIÓN DE			ÁRE	ÁREAS DEGRADADAS					
CAUCE MATRIZ DE IMPORTACIA											
INTENSIDAD (I) ÁREA DE INFLUEN (AI)				MOMENTO (PZ)				REVERSIVILIDAD ®			
BAJA		LOCAL		Х	LAR	GO PLAZO)		CORTO PLAZO		
MEDIO	Х	REGIONAL	_		MEDIANO PLAZO			Х	MEDIANO PLAZO		
ALTA		EXTRA REGIONAL	_		INM	EDIATO			IRREVERSIBLE		
EFECTO (RCE) SINERGIA (S)				ACUMULACIÓN(AC)				PERIOCIDAD(RM)			
INDIRECTO		SIN SINERGIS	MO		SIM	SIMPLE		DESCONTINUO			
DIRECTO	Х	SINERGIC	0	Х	ACL	UMULATIVO X		Х	PERIODICO		
MUY SINERGICO							CONTINUO		Х		
RECUPERABILIDAD PERMANENCIA				A DEL EFECTO							
RECUPERABLE F			FUGA	٩Z							
MITIGABLE X			TEM	PORA	L						
IRRECUPERABLE			PERM	MANE	NTE	Х					
IMPORTANCIA											
RESULTADOS (IM)					PASIVO AMBIENTAL MODERADO CRÍTIC				ERADO – I RÍTICOS	NO	
MEDIDAS DE MITIGACIÓN											
Empleo de material adsorbente natural (bioadsorbente) (cascarilla de arroz, hoja de choclo, corteza de naranja) en proceso de coagulación-floculación (Guilcamaigua <i>et al</i> , 2021).											

FICHA DE REGISTRO PASIVO AMBIENTAL EN EL RÍO CUCARACHA CANTÓN LA CONCORDIA

TRAMO

Pasivo ambiental extractora Teobroma

CARACTERIZACIÓN DEL PASIVO AMBIENTAL

UBICACIÓN		JTM:	LADO
El pasivo se encuentra			
ubicado detrás de la extractora Teobroma,	X	Y	Derecho
confluyendo hacía el	669056	10012533	
cuerpo hídrico			

DESCRIPCIÓN DEL PASIVO AMBIENTAL

El pasivo ambiental corresponde a una filtración de las pozas de oxidación hacia el cuerpo hídrico, contaminando de manera directa al mismo.

CATEGORIA		CAUSA	
ECOLOGÍA			
CONTAMINACIÓN AMBIENTAL	Х	Estadosión de cosite Technolog	
ASPECTO ESTÉTICO		Extraccción de aceite Teobroma	
ASPECTO DE INTERES HUMANO			
TIF	PO DE	PASIVO AMBIENTAL	
DESLIZAMIENTO O DERRUMBE		DAÑOS ECOLOGICOS Y PASAJISTAS	

CONTAMINA	CIÓN	DE AGUAS		Х		OS A LAS LADOS	FUENT	ES DE	AGUA A		Х
ACCESO O F		DOS			вот	BOTADEROS LATERALES INDISCRIMINADOS					
EROSIÓN Y CAUCE	SEDIM	IENTACIÓN	DE		ÁRE	AS DEGRA	ADADA	S			
			N	MATRIZ	Z DE I	MPORTAC	CIA				
INTENSIDAD) (I)	ÁREA DE (AI)	INFLUEN	ICIA	MON	MENTO (P	Z)		REVERSI	VILIDAD ®	
BAJA		LOCAL		Х	LAR	GO PLAZO)		CORTO F	PLAZO	
MEDIO	Х	REGIONAL	_		MEDIANO PLAZO			Х	MEDIANC) PLAZO	Х
ALTA		EXTRA REGIONAI	_		INMEDIATO IRREVERSI		SIBLE				
EFECTO (RC	E)	SINERGIA	(S)		ACU	IMULACIÓ	N(AC)		PERIOCII	DAD(RM)	
INDIRECTO		SIN SINERGIS	МО		SIMI	PLE			DESCON	TINUO	
DIRECTO	Х	SINERGIC	0	Х	ACU	IMULATIV)	Х	PERIODIO	CO	Х
		MUY SINE	RGICO						CONTINU	10	
RECUPERAE	BILIDAI	D PERM	IANENCI	A DEL	EFEC	то					
RECUPERAE	BLE			FUG/	ĄΖ						
MITIGABLE			Х	TEM	PORA	L					
IRRECUPER	ABLE			PERI	MANE	NTE	Х				
				IN	(IPOR	TANCIA					
RESULTADO	S (IM)				40	PASIVO A	AMBIEN	NTAL		ERADO – RÍTICOS	NO
			N	1EDID/	AS DE	MITIGACI	ÓN				

Empleo de hongos lipolíticos (Penicilium sp., Aspergilus sp. y Amorphoteca sp.) para degradación de aguas aceitosas (Moya y Moya, 2018).

FICHA DE REGISTRO PASIVO AMBIENTAL EN EL RÍO CUCARACHA CANTÓN LA CONCORDIA

TRAMO

Pasivo ambiental extractora Molsando S.A.

CARACTERIZACIÓN DEL PASIVO AMBIENTAL

UBICACIÓN	ı	UTM:	LADO
El pasivo se encuentra			
ubicado detrás de la			
extractora Molsando S.	X 669279	Y 10015231	Derecho
A., confluyendo hacía el	009279	10015231	
cuerpo hídrico			

DESCRIPCIÓN DEL PASIVO AMBIENTAL

El pasivo ambiental proviene de aguas residuales de la extractora, conducido por un canal que arrastra restos de aceites, contaminando de una manera directa el río.

CATEGORIA		CAUSA
ECOLOGÍA		
CONTAMINACIÓN AMBIENTAL	Х	Extraoción de accite Malacade C A
ASPECTO ESTÉTICO	Extracción de aceite Molsando S.A.	
ASPECTO DE INTERES HUMANO		

			TIF	PO DE	PASI\	O AMBIEN	NTAL				
DESLIZAMIE	NTO C	DERRUN	IBE	DAÑOS ECOLOGICOS Y PASAJISTAS							
CONTAMINA	CIÓN	DE AGUAS X				DAÑOS A LAS FUENTES DE AGUA A					X
ACCESO O F		DOS				LADOS ADEROS I	_ATER	ALES IN	NDISCRIMII	NADOS	
EROSIÓN Y CAUCE		IENTACIÓ	N DE		ÁRE	AS DEGRA	ADADA	S			
0,1002			ľ	MATRIZ	Z DE I	MPORTAC	CIA				
INTENSIDAD (I) ÁREA DE INFLUENC (AI)			NCIA	MON	MENTO (P	Z)		REVERSI	VILIDAD ®)	
ВАЈА		LOCAL		Х	LAR	GO PLAZO)		CORTO P	LAZO	
MEDIO		REGION	ΑL		MEDIANO PLAZO			Х	MEDIANC	Х	
ALTA	Х	EXTRA REGION	AL		INMEDIATO				IRREVERSIBLE		
EFECTO (RC	EFECTO (RCE) SINERGIA (S)				ACUMULACIÓN(AC)			PERIOCIE	DAD(RM)		
INDIRECTO		SIN SINERG	SMO		SIM	PLE			DESCONTINUO		
DIRECTO	Х	SINERG	СО	Х	ACL	JMULATIV	O	Х	PERIODIO	Х	
		MUY SIN	ERGICO						CONTINU	0	
RECUPERAE	BILIDAI	D PER	MANENC	IA DEL	EFEC	то					
RECUPERAE	BLE			FUG/	٩Z						
MITIGABLE			Х	ТЕМ	PORA	L					
IRRECUPER	ABLE			PERI	MANE	NTE	Х				
				ΙΝ	1POR	TANCIA					
RESULTADO	S (IM)				48	PASIVO A	AMBIEN	NTAL		ERADO – I RÍTICOS	NO
			M	1EDID/	AS DE	MITIGACI	ÓN				
Emploo do u	n biofi	ltra a baa		auto (Ciobb	ornio oraș	oinoo\ :	. lontoi:	o do oare ('Lomme =	nin o d

Empleo de un biofiltro a base de lechuguín (*Eichhornia crassipes*) y lenteja de agua (*Lemma minor*), para remoción de aceites y grasas (Sarango y Sánchez, 2016).

ANEXO 2. ANÁLISIS DE LABORATORIO UDLA

Nombre del Solicitante: Fecha de entrega de muestras: Fecha de análisis:			Alexander Piloso								
			11/11/2021								
			19/11/2021								
Condiciones de muestra: Preparación de muestra:		Las muestras fueron entregadas en botellas de vidrio ámbar en cadena de frío a 4°C.									
		Se colocó el volumen respectivo para realizar el análi por gravimetria.									
T	Técnica utilizada:		Gravimetria								
Resp	onsable del anál	isis:	Genoveva Granda								
			RESULTA	DOS ACEITES	Y GRASAS mg/L						
MUESTRA	VOLUMEN	DILUCIÓN	Peso vacio	Peso 105°C	Aceites y Grasas mg/L						
E.A.M.S.A.1	100 ml	1	12,2104	12,2115	0,011						
E.A.M.S.A.2	100 ml	1	11,9673	11,9688	0,015						
E.A.T.1	E.A.T.1 100 ml 1		13,0427	13,0429	0,002						
E.A.T.2 100 ml 1		2 100 ml 1	11,6215	11,6219	0,004						
E.A.U.1	100 ml	1	13,0075	13,0079	0,004						
FAU2	100 ml 1								12,1208 0,008		

Observaciones:

Nombre del Solicitante:		Alexande	r Piloso					
Fecha de entrega de muestras:	11/11/202	21						
Fecha de análisis: Condiciones de muestra: Preparación de muestra:		11/11/202	21					
		Las muestras fueron entregadas en botellas de vidrio ámbar en cadena de frío a 4°C. Se colocó volumen respectivo de cada una de las muestras en las botellas para la determinación de DBO ₅						
							Т	Técnica utilizada:
Resp	onsable del anál	sis:	Genoveva	a Granda				
				RES	SULTADO	S DBO	mg O ₂ /	L
MUESTRA	VOLUMEN	DILUCIÓN	Dia 1	Dia 2	Dia 3	Dia 4	Dia 5	DBO mgO 1/
E.A.M.S.A.1	432 ml	1	0	_1	2	2	3	3
E.A.M.S.A.2	432 ml	1	0	1	-1	2	2	2
E.A.T.1 432 ml 1		0	0	1	1	1	1	
E.A.T.2 432 ml 1		0	1	1	1	1	1	
E.A.U.1	432 ml	1	0	1	1	1	1	1
E.A.U.2	432 ml	1	0	0	1	1	1	1

bs				

udb- 🤃	AANCITYCHA MERUC	RESULTADO DE	ANÁLISIS DQO			
Nombre	del Solicitante:	Alexander Pilos	0			
Fecha de er	trega de muestras:	11/11/2021				
Fech	a de análisis:	12/11/2021				
Condicio	nes de muestra:	Las muestras fu de frío a 4°C.	ueron entregadas en botellas de vidrio ámbar en cadena			
Preparac	ción de muestra:	Se realizó digestión ácida a una temperatura de 150°C.				
Técn	ica utilizada:	Digestión Ácida Genoveva Granda				
Respons	able del análisis:					
			RESULTADOS DQO mg O 2/L			
MUESTRA	VOLUMEN	Absorbancia	DQO mgO ₂ /L			
E.A.M.S.A.1	2 ml	0,018	16			
E.A.M.S.A.2	2 ml	0,017	15			
E.A.T.1	2 ml	0,006 9				
E.A.T.2	2 ml	0,005 8				
E.A.U.1	2 ml	0,010	11			
E.A.U.2	2 ml	0,007	9			

Observaciones:

INFORME DE SERVICIOS DE ENSAYO

ANÁLISIS DE MUESTRAS DE AGUA Laboratorios de Investigación

Informe No. LI-AM-0013 Fecha de emisión: Noviembre 23, 2021

1. Información Cliente

Cliente:	Arlel Alexander Piloso García	
Correo electrónico:	attel pilosoff en permentur eq	
CI,	0803279017	

2. Cotización

Servicio solicitado	Número de muestras	Costo por muestra	Costo Total
Análisis DBO	6	\$16.00	\$96.00
Análisis DQO	6	\$28.00	\$168.00
Análisis Aceites y Grasus	6	\$10.00	\$60.00
Substotus			\$324.00
D/A			\$38.88
Total			\$362.88

3. Dates de las Muestras*

Muestras entregadas**	Andfals DBO, DQO, Aceites y Graças	Fecha de recepcide de muestras
		11.11.2021

[&]quot;Adjusto Formularia Salicitud de Análisis (información de cada muestra entregada).

^{**} Los muestros son recopilidas y entregadas directomente por el cliente para su análisis en los Laboratorios de Investigación – UDLA. La UDLA asume, de buena fe, que todos los muestros recibidos cuenton con el respoldo legal obtenido por el contratante en materia de permisos de obtención, manipulación y demás requerimientos establecidos en los normativos de la legislación ecuatoriona.

INFORME DE SERVICIOS DE ENSAYO

ANÁLISIS DE MUESTRAS DE AGUA Laboratorios de Investigación

4. Reporte de resultados

Método de ardiisis	Fecha de análisis	Fecha de obtención de resultados
Análisis DBO: Método por incubación de agua durante 5 días a 20°C.	11.11.3021	16.11.2021
Protocolo tomado de Standard Methods for the examination V Demand 5210"	Vater and wastewater "Bloc	hemical Oxygen
Análisis DQO: Método por digestión ácida 150°C.	12.11.2021	12.11.2021
 Protocolo tomado de Standard Methods for the examination V COD 5220* 	Vater and wastewater "Che-	mical Oxygen Demand
Andlisis Aceites y Grasas: Método gravimétrico	19.11.2021	19.11.3021

Observaciones

5. Informe Final

Fecha de elaboración de informe técnico	Archivos adjuntos
23.11.2021	1. RESULTADOS

Notas:

- El presente informe de ensayo aplica únicamente para las muestras entregadas por el cliente a la fecha y hora descritas en este documento. Las muestras fueron analicadas según fueron recibidas en los Laboratorios de Investigación – UDLA.
- Los resultados obtenidos se tratarán como información confidencial. La UCLA ratifica la autoria intelectual del contratante sobre las muestras y los resultados de los servicios obtenidos.

INFORME DE SERVICIOS DE ENSAYO

ANALISIS DE MUESTRAS DE AGUA Z Laboratorios de Investigación

 Se prohíbe la reproducción parcial o total del presente informe sin previa autorización de los Laboratorios de investigación – UDLA.

Firma de Responsable Técnico Maria Genoveva Granda Técnica

Laboratorios de Investigación

Firma de Autorización PENTIGACIÓN

Angle Bultron Coardinadors

Laboratorios de Investigo

Anexo 3. Registro fotográfico de la fase de desarrollo

Foto 1. Identificación del pasivo ambiental

Foto 2. Descripción del pasivo ambiental

Foto 3. Toma de la muestra in-situ

Foto 4. Almacenamiento y transporte de las muestras

Foto 5. Entrega de las muestras al laboratorio de la UDLA

Foto 6. Análisis en el laboratorio de química ambiental de la ESPAM

Foto 7. Cultivo de cacao entre palma muerta

Foto 8. Tala de la palma infectada con el PC